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Abstract

FAO’s most recent assessments indicate that, globally, in 2011–13, about one in eight people in the world are
likely to have suffered from chronic hunger, not having adequate food supplies for an active and healthy life.
Food security crises are now caused, almost exclusively, by problems in access to food, not absolute food
availability, but, monitoring agricultural production remains fundamental. Traditional ground-based systems of
production estimation have many limitations which have restricted their use. However, remotely sensed satellite
data offer timely, objective, economical, and synoptic information for crop monitoring. The objective of this
paper is to review the contribution of remote sensing techniques in the classification, monitoring of crop
phenology and condition and estimation of production.
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Introduction
Food security is one of the most essential

factors for our physical wellbeing. In fact, it is a
vital condition for a healthy and happy life. The
Food and Agriculture Organization of the United
Nations (FAO)  defines a food-secured world as “a
situation that exists when all people, at all times,
have physical, social,  and economic access to
sufficient, safe, and nutritious food that meets their
dietary needs and food preferences for an active
and healthy life” (FAO et al., 2013). Unfortunately,
at present, the situation, at a planetary scale, is of
food insecurity. FAO’s most recent estimates
appoint that about 12% of the world population,
about 842 million people, in the period 2011-2013,
have suffered from chronic hunger, that is, they did
not have access to enough food (FAO et al., 2013).
Although this figure is lower than the
corresponding value for 2010-2012, which means a
progress was obtained in the attempt to achieve

hunger reduction, overall it is still insufficient
(FAO et al., 2013).

Food security is not a simple concept. It
comprises both physical and economic access to
food that meets nutritional necessities of human
beings as well as their food preferences. Four food
security dimensions are usually considered:
availability, access, utilization and stability (Grote,
2014). All of them must be fulfilled simultaneously
so that food security objectives are achieved (FAO
et al., 2013). Food availability, the physical supply
of food stocks, plays an essential role in food
security, it fact it provides the base for food
security.

Food availability in any location depends on
production, storage and transport infrastructures.
Thus, food production is a key determinant of food
availability and consequently of food security. In
fact, in order to develop robust policies and
strategies for food management that may guarantee
food security, timely and accurate evaluations of
global crop production are vital (Becker-Reshef et
al., 2010).

Crop production depends on many factors,
some intrinsic to the species being cultivated some
extrinsic. Intrinsic factors refer to the biological
lifecycle of crops which influence the seasonal
patterns they may depict (Atzberger, 2013).
Production depends, on other hand, on the physical
characteristics of the land being cultivated, climatic
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factors and also on agricultural management
practices (Atzberger, 2013). Information on crop
development obtained as early as possible during
the growing season is essential for an estimation of
the probability of seasonal production deficits,
which is especially important for food-insecure
countries. Thus, early warning monitoring systems
which provide timely and easily interpretable
information available to decision makers are
needed (Meroni et al., 2014). However,
productivity can change within short time periods,
due to the fact that extrinsic factors that influence
crop productivity are highly variable in space and
time, especially weather conditions. This clearly
challenges the implementation of an efficient and
prompt monitoring system (Atzberger, 2013). As
pointed out by the Food and Agriculture
Organization, information is worth little if it
becomes accessible too late (FAO et al., 2013).

For the quantification of food production
information on cultivated area, growth, status and
yield of crops is needed.

Technologies, tools and methodologies for
vegetation monitoring

A range of techniques have been developed to
estimate crop production with varying degrees of
success (Becker-Reshef et al., 2010). They include
visual field techniques, crop simulation models and
remote sensing (Wall et al., 2007 in Becker-Reshef
et al., 2010).

Crop yield monitoring with field techniques
usually involves a first phase in which vegetation
amount and condition are assessed during manual
field sampling and a second phase in which the
values obtained are processed and aggregated in
order to produce a regional yield value. However,
these methods are inadequate for large areas
because they have high operating costs and are
time-consuming and have thus been progressively
abandoned (Wang et al., 2013).

Crop growth models simulate biogeophysical
processes in crops systems, considering soil-crop-
atmospheric interactions. They provide estimates of
growth over time as well as the final yield. Crop
simulation models use a variety of input data like
climate information, soil type, plant varieties and
management practices to forecast yield. They also
include adjustments derived from disease, insect,
and harvest losses (Moen et al., 1994 in Wang et
al., 2013). Crop growth models have some
important limitations: they are simplifications of
reality and are also restricted by uncertainties in the
input parameters (Fang et al., 2008 in Wang et al.,
2013). Moreover, implementation at a large scale of

crop simulation models is limited by input data
availability (Chipnashi et al., 1999 in Wang et al.,
2013).

A more realistic approach is the use of remote
sensing, which consists in the acquisition of
information about objects or phenomenons without
making physical contact, using, in general, aerial
sensor technologies. Remote sensing has the ability
to provide timely, synoptic, reliable information
over a long time-period with high revisit frequency
and with an excellent cost/benefit ratio, a fraction
of the cost of traditional approaches (Manjunath et
al., 2002; Lobell et al., 2003; Prasad et al., 2006;
Nellis et al., 2009; Calvão and Palmeirim, 2011;
Atzberger, 2013; Meroni et al., 2014). Moreover,
remote sensing allows the acquisition of data in
areas difficult to reach and at different resolutions
(Wang et al., 2013). And in fact, agricultural
monitoring from space has long been extensively
utilized (as early as the 1930s) over a wide range of
geographic locations and spatial scales (Wall et al.,
2008; Nellis et al., 2009; Becker-Reshef et al.,
2010; Atzberger, 2013; Piou et al., 2013).

Basis of remote sensing approach
Remote sensing techniques try to infer

characteristics of objects from changes occurred in
the properties of electromagnetic energy resulting
from interactions with these objects. All bodies of
the earth's surface reflect radiation from the sun and
emit themselves energy. The intensity and spectral
composition of the reflected/emitted radiation
depend on the physical and chemical inherent
properties of the objects. Moreover, the signal
reaching sensors is influenced by external factors
like the atmosphere and the geometry sun-object-
sensor. The interpretation of remote sensing data
requires the knowledge of the spectral properties of
the different constituents of the Earth's surface as
well as their variation caused by external factors.
The spectral characteristics of the different plant
species must be known for accurate estimation of
biophysical parameters such as biomass and
productivity from remote sensing methods
(Camacho-De Coca et al., 2004).

The reflectance values of any object in the
different regions of the electromagnetic spectrum
allow the delineation of the spectral reflectance
curve or spectral signature of that object. Green
vegetation has a unique and complex spectral
signature as compared to other materials on Earth
(Camacho-De Coca et al., 2004). Compared with
plants, the spectral signatures of bare soils, exposed
rocks and sand, which constitute background for
vegetation, are relatively simple (Hoffer, 1978;
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Curran, 1983; Goward et al., 1985). These materials
usually exhibit monotonic increases in reflectance
throughout the visible and NIR regions (Satterwhite
and Henley, 1987; Richards, 1993; Pinter et al.,
2003). In the SWIR their spectra display more
features than those observed in shorter wavelengths
but are still much less complex than those of
vegetation (Hoffer 1978; Curran 1983; Goward et
al., 1985; Tucker and Sellers 1986; Pinter et al.,
2003).

Plants have, in general, a complex structure,
consisting of several leaf layers arranged according
to various geometries and also of elements other
than leaves, especially trunks and branches (Curran,
1983). The interactions between solar radiation and
plant canopies are extremely complex and
determine the amount of radiant energy that is
absorbed, reflected or transmitted by plants and
therefore the fraction available to the processes of
photosynthesis and evapotranspiration. The spectral
behavior of plant canopies depends, on one hand,
on the canopy elements and, on the other hand, on
their spatial organization (Homolová et al., 2013).
However, vegetation spectral behavior is
predominantly a function of the spectral properties
of the leaves (Daughtry and Walthall, 1998). Green
leaves typically display very low reflectance in the
visible regions of the spectrum (0.4-0.7 µm),
especially in the blue and red bands, a high
reflectance in the near-infrared (0.7-1.3 µm), much
greater than in any portion of the visible, and a
variable reflectance in the middle infrared regions
(1.3-2.5 µm) (Hoffer, 1978; Curran, 1983; Hardisky
et al., 1983; Schneider, 1984; Goward et al., 1985,
1987; Milton and Mouat, 1989). The dominant
factor controlling vegetation reflectance varies
depending on the spectral region. Photosynthetic
pigments are of fundamental importance in the
response of vegetation in the visible spectral region.
However, in the near infrared, this role is due
essentially to the internal structure of the leaves.
High reflectance in the near infrared is due to
multiple scattering of light at the air-cell interfaces
in the spongy mesophyll cells located in the interior
or back of leaves. In the mid-infrared spectral
region the vegetation behavior is mainly
determined by the water content of the leaf tissues
(Sinclair et al, 1971; Hoffer, 1978; Barrett and
Curtis, 1982; Boyer et al., 1988).

Vegetation typically shows a large difference
between the values of the spectral reflectance in the
red and near infrared regions (low red reflectance
and high reflectance in the near infrared) (Figure 1).
It has been found that as canopy green area

increases, either due to increasing crop density or
photosynthetic pigments content this difference also
increases (Schneider et al., 1985; Scotford and
Miller, 2005). Rather, the substrate component has
usually a more attenuated difference between the
reflectance values in these two regions (Tucker and
Sellers, 1986; Bartlett et al., 1988; Scotford and
Miller, 2005). It is comprehensible, therefore, that
many studies of vegetation using remote sensing
data use the spectral regions of the red and near
infrared (Pinter et al., 2003). In the spectral
signature of green leaves there is a sharp increase in
reflectance values in the transition zone from the
visible to the near infrared region, between about
0.7 and 0.75 µm (Hoffer, 1978; Boyer et al., 1988).
This abrupt variation in reflectance is generally
referred to as the ``red edge” and is due to a change
of processes: from the absorption of visible light by
photosynthetic pigments to the diffusion of near
infrared radiation in the internal structure of the
leaves. Research has documented that measures
based on the red edge position or shape are well
correlated with canopy biophysical parameters.
However, they are less influenced by atmospheric
effects and background noise (Mauser and Bach,
1995 in Broge and Leblanc, 2000). For example, it
has been found that due to situations of nutrients
deficiency this inflection point of the spectral curve
can oscillate towards higher or lower wavelengths
(Boyer et al., 1988).

Figure 1. Spectral behavior of a healthy leaf.

Methods of vegetation monitoring using remote
sensing data

In a remote sensing-based approach two main
types of methods have been developed to estimate
vegetation quantity and condition. One type
consists in the development of physiology-based
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plant growth models and the other type in the
development of empirical or semi-empirical
relationships between plant biophysical parameters
and arithmetic combinations of reflectance from
different spectral bands into a single metric.

Physiology-based plant growth models simulate
biophysical processes and compute crop growth in
the different stages of plant development, from
emergence till maturity. Their main drawback is
that they typically need numerous inputs that are
specific to the crop species, soil type, management
practices and local environmental conditions
(Doralswamy et al., 2003; Becker-Reshef et al.,
2010). Some of the inputs are remotely-sensed
driven variables such as weather related events that
affect plant development (Doralswamy et al., 2003;
Howard et al., 2012). Due to the lack of available
data these models have had limited application at
scales larger than field scale (Doralswamy et al.,
2003). Prasad et al. (2006) developed a model for
crop yield assessment for corn and soybean using
NDVI from the AVHRR, soil moisture, surface
temperature and rainfall, for the state of Iowa (US
Corn Belt). The model developed showed
promising results for forecasting crop yields at
regional and global scales.

The other type of methods for vegetation
characterization through remote sensing involves
the development of empirical or semi-empirical
relationships between plant biophysical parameters
and arithmetic combinations of reflectance from
different spectral bands into a single metric, the so
called “vegetation indices” or VIs (Tucker, 1979;
Pinter et al., 2003). VIs have been found to be
related to a number of vegetation biophysical
parameters such as biomass, Leaf Area Index (LAI,
the total one-sided area of photosynthetic tissue per
unit of ground surface area) percent vegetation
cover, fraction of absorbed photosynthetically
active radiation and crop yield (Baret and Guyot,
1991; Liu and Huete, 1995; Hurcom and Harrison,
1998; Gitelson, 2004). A major weakness of VIs is
that relationships are often site specific and thus
their extrapolation to new areas is not always
feasible or recommended (Becker-Reshef et al.,
2010). However, compared to simulation models
advantages of VIs consist on their simplicity of
implementation, transparency and limited data
requirements (Becker-Reshef et al., 2010). And, in
fact, since the early 80s, satellite imagery-based
spectral VIs have been extensively used and
constitute an important tool in the mapping and
monitoring of terrestrial ecosystems because they
are well correlated with green biomass and leaf area
index of crop canopies (Pinter et al., 2003). They

provide key measurements in productivity,
phenology, vegetation health and biodiversity
studies (Prasad et al., 2006).

The rationale for VIs lies on the fact that green
vegetation has a unique and complex spectral
behavior as compared to other materials on Earth
(Huete et al., 1994; Camacho-De Coca et al., 2004).
Different VIs based on the combination of two or
more spectral bands have been developed as it has
been found that multi-band combinations are more
sensitive to changes in vegetation amount and state
than information from single bands (Liu and Huete,
1995; Rondeaux et al., 1996; Henry and Hope,
1998; Schmidt and Karnieli, 2001). Each VI has its
specific advantages and limitations. VIs is sensitive
to external influences such as the presence of
background, atmospheric effects and illumination
geometry (Rondeaux et al. 1996; Govaerts et al.
1999; Schmidt and Karnieli 2001). An ideal VI
should be very sensitive to vegetation biophysical
parameters and rather insensitive to these external
perturbing factors (Calvão and Palmeirim, 2011).
Soil-adjusted VIs such as the Soil Adjusted
Vegetation Index (SAVI) and its various versions,
known as the SAVI family, were developed in
order to minimize brightness-related soil effects on
VI performance, an important phenomenon,
especially at low vegetation cover (Huete, 1988; Qi
et al., 1994; Pinter et al., 2003). However, even
these VIs are influenced, to some extent, by
background (Broge and Leblanc, 2000).

Some other VIS was designed to minimize
atmospheric influence like GEMI and ARVI. These
are called atmospherically resistant vegetation
indices (Kaufman and Tanre, 1992).

However, even if the influences of external
factors could be completely removed, the type of
VIs that use reflectance data from red and NIR
bands would still have intrinsic limitations because
they are not a single measure of a specific plant
biophysical parameter but rather of many
vegetation parameters (Govaerts et al., 1999;
Haboudane et al., 2004). In fact, a major problem in
the use of these VIs arises from the fact that canopy
reflectance, in the visible and near infrared,
strongly depends on both structural (LAI, leaf
orientation, canopy architecture) and biochemical
properties (e.g., photosynthetic pigments content)
(Asner, 1998; Gao et al., 2000; Haboudane et al.,
2004). It is difficult to uncouple the combined
effect of the two influences (red and NIR spectral
regions) and, consequently, to develop a “unique”
VI exclusively sensitive to a single vegetation
property, as Agapiou et al. (2012) point out.
However, some authors have recently demonstrated
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that chlorophyll concentration can be assessed with
minimal confounding effects owing to LAI based
on a combination of two types of spectral indices:
indices sensitive to pigment content and indices
resilient to background influence (Broge and
Leblanc, 2000; Daughtry et al., 2000; Haboudane et
al., 2004). Though, these VIs tend to use other
spectral regions besides red and NIR regions.

The Normalized Difference Vegetation Index
(NDVI) is one of the most widely used vegetation
indices because it is of simple calculation, has a
high degree of standardization and assumes no
assumption about the distribution of the data
(Curran, 1983). In the formulation of this index the
difference between the values of reflectance in red
and near infrared is normalized relative to the sum
of these values, a fact that partially compensates
changes in atmospheric conditions and solar
irradiance (Curran, 1983; Hardisky et al., 1984;
Tucker et al., 1985; Johnson, 2014). The
normalization also allows for easier comparison of
data from different sensors (Johnson, 2014). Some
authors have found almost linear relation between
NDVI and Leaf Area Index (LAI)/fAPAR (fraction
of Absorbed Photosynthetically Active Radiation)
(Prince, 1991 in Atzberger, 2013). However, other
authors have demonstrated that its main weakness
is the inherent nonlinear relationship it sometimes
displays with many vegetation biophysical
parameters, saturating at high levels of biomass.
Besides, NDVI is extremely sensitive to the optical
properties of background materials, especially at
low vegetation cover (Broge and Leblanc, 2000;
Schmidt and Karnieli, 2001). In spite of these
disadvantages, NDVI, since it reflects vegetation
greenness and thus indicates levels of healthiness in
the vegetation development, has been widely used
since the early 1980s, and is, at present, the only
operational, global-based VI used for vegetation
monitoring, crop yield assessment and forecasting
(Roujean and Breon, 1995; Calvão and Palmeirim,
2011; Becker-Reshef et al., 2010).

The majority of VIs used in agricultural studies
use the red and near infrared wavelengths (Scotford
and Miller, 2005). However, others explore
additional regions of the spectrum (Agapiou et al.,
2012). VIs can be classified in different ways, the
simplest one refers to the wavelength
characteristics used in their formulation: broadband
indices based on broadband spectral data and
narrowband indices based on narrowband spectral
data (hyperspectral, i.e., reflectance for many
contiguous narrow wavelength bands). Landsat TM
and SPOT sensors provide broadband multispectral

data. An example of a narrowband hyperspectral
spaceborne sensor is NASA’s Earth Observing-1
Mission Hyperion, capable of capturing high
resolution images of the earth surface in 220
contiguous spectral bands (Manevski et al., 2011).
Broad waveband VIs usually lack diagnostic ability
for recognizing a particular biophysical
characteristic and thus narrowband indices were
developed. Hyperspectral VIs have been proposed
to detect water, nutrient, and pest-induced stress in
plants, at the same time minimizing unwanted
influences (Pinter et al., 2003). However, the
interpretation of the high quantity of data obtained
from hyperspectral sensors can be complex due to
the inter-dependency between wavelength
(Scotford and Miller, 2005). Roberts et al. (2011) in
Agapiou et al. (2012) refer that narrowband VIs can
be divided into three main categories, according to
the biophysical parameters being investigated:
structure, biochemistry and plant physiology/stress.

Existing satellite systems used in agriculture
monitoring

Due to the rapid development of remote
sensing technology there has been an increase in
the availability of remotely sensed images which
can be acquired from a variety of platforms such as
satellite, aircrafts, unmanned vehicles and handheld
devices and gathered by different instruments like
radiometers, film cameras, digital cameras, and
video recorders. As regards agricultural monitoring
satellites are of great importance. At present, data
obtained from sensors onboard different satellites
on many orbits provide a wide range of images
which differ with respect to spectral, spatial,
radiometric and temporal characteristics (Ahmed et
al., 2011; Atzberger 2013).

As regards crop monitoring medium spatial
resolution (10-100 m) images are the most the most
frequently used at regional/national scale. This
includes data from Landsat series satellites and
SPOT (Ahmed et al., 2011). The advantages of
using medium spatial resolution satellite imagery
consist in the fact that, due to the resolution, large
areas can be captured in a single image.
Additionally, the medium temporal resolution of
these satellites (around fortnightly) makes them
suitable for many agricultural applications.
However, for specific studies a timing window of
sensing of only a few days is required as is the
situation of the necessity to apply inputs at the
correct time and the rapid development of the crop
canopy that urges crop harvest (Ahmed et al.,
2011). Ikonos and Quickbird satellite sensors have
a high temporal observation frequency (<3 days).



Teresa Calvão and Maria Fernanda Pessoa

143

On the other hand these sensor have high spatial
resolution (<5m) which allows their use in detailed
studies (Joyce et al., 2009).

Crop mapping
The first step in the prediction of crop

production is the determination of the spatial
distribution and areal extent of the different crops
present in the rural landscape, that is, the
assessment of crop identity. Then, cop production
can be computed incorporating yield assessments
per unit area which can be retrieved both from
ground sampling and remote sensing data.

The classification of crops from remote sensing
methods has become an important part of
agricultural management (Van Niel and Mc Vicar,
2004). One of the most important applications of
remote sensing consists in the classification of
objects at the earth surface and, in fact, plant
communities have been classified and mapped
using a wide variety of remote sensors (Manevski
et al., 2011). Crop classification is based on the
differential spectral behavior of the various crops
present in the study area (Xie et al., 2008). Spectral
classes of the imagery are then converted into the
different plant species in the interpretation process.
For that purpose many methods have been
developed that aim increasing classification
accuracy (Van Niel and Mc Vicar, 2004). These
classification methods include supervised and
unsupervised methods. Supervised methods are
time-consuming because they require human
intervention, that is, classifiers have to be
developed by hand. Thus, they are impractical for
large area applications. For that reason
unsupervised methods were developed which
automatically generate classifiers and then maps of
the crops in the study area (Yan and Roy, 2014).

In many cases a multi-temporal approach can
be used to increase classification accuracy and,
consequently, to enhance the mapping process
efficiency, when single date information does not
allow accurate crop discrimination (Van Niel and
Mc Vicar, 2004; Xie et al., 2008). In fact, the
spectral behavior of plants has a temporal aspect
(Hoffer, 1978). As plants develop biomass
increases, until maturity, there are changes in leaf
pigment concentration and in leaf structure and
canopy architecture. These temporal changes,
known as phenology, affect the interaction between
plant canopy and solar radiation, and their analysis
can improve the accuracy of crop classification and
thus crop yield estimation.

Phenology
Vegetation phenology is the study of the timing

of seasonal developmental stages in plant life
cycles which are closely coupled to seasonally
varying weather patterns. These stages include
budburst and swelling, vegetative growth,
flowering, fruit setting and fruit maturing as well as
senescence (Mounzer et al., 2008). The timing of
phenological events is essential for efficient crop
management since it allows growers to program
management practices like planting and harvest
times, fertilization application, irrigation and pest
control (Mounzer et al., 2008).

The spectral behavior of plant canopies changes
with stage of growth due to variations in leaf
structure, water content and concentration of
biochemicals, biomass, percentage of leaves,
branches, flowers and fruits, and to differences in
the architectural arrangement of the various canopy
elements which results in the variation of
background influence with time (Pinter et al.,
2003). These facts allow the remote sensing of
plant phenology. Vegetation reflectance is
primarily a function of the optical properties of
leaves, but also of other canopy elements (non-
photosynthetic elements such as branches and
trunks), canopy architecture (leaf and stem
orientation, foliage clumping), background
reflectance, illumination conditions, viewing
geometry and atmospheric influence (Baret and
Guyot, 1991; Asner, 1998; Huete et al., 1999; Gao
et al., 2000; Homolová et al., 2013). Even when
leaf spectral properties remain constant, the spectral
signature of vegetation varies as the architectural
arrangement of plant components changes and also
the proportion of soil and plants (Pinter et al.,
2003). Airborne sensors obtain an integrated view
of all these effects, that is, the signal received from
a single surface element (pixel) is presumed to be
the contribution of different vegetation and bare
soil components.

Canopy structure consists in the spatial
arrangement of the different elements of a plant
canopy and it decisively determines the interactions
between solar radiation and vegetation. In fact,
canopy structure impacts canopy reflectance by
positioning the plant elements in the three-
dimensional space and thus providing the chance
for photons to interact with these elements as well
as with background (Asner, 1998; Calvão and
Palmeirim, 2011). Since plant architecture is
influenced by a number of parameters and
processes, not only intrinsic (ontogeny) but also
extrinsic, like water availability, cultivation
practices, pests and diseases, its changes over time
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can provide important information on plant stage
and condition. This means remote sensing can be a
powerful tool for assessing crop state, drought
severity, nutrients deficiency as well as monitoring
diseases and pests.

Leaf area index (LAI) is the most widely used
descriptor of canopy structure in remote sensing
studies (Homolová et al., 2013). LAI refers to the
amount of leaf material present in plant canopies
and consequently controls various processes such
as photosynthesis, respiration, transpiration and rain
interception. LAI affects, in a decisive way, the
photosynthetically active radiation
absorbed/reflected by the canopy and, therefore, the
energy balance of the plant. LAI is closely related
to the total biomass of the plant. It is
comprehensible, then, that monitoring LAI
variation during the growing season is essential for
assessing crop growth and vigor.  LAI is also an
important parameter not only for the estimation of
primary production but also in land-surface
processes and parameterizations in climate models
(Nellis et al., 2009). LAI can be determined directly
during field surveys by stripping off all the leaves
and measuring their area but it can also be retrieved
using remote sensing information. As the canopy of
plants develops there is usually an increase in the
number of canopy layers and leaves, a fact that will
enhance NIR reflectance, mainly owing to the
increase in the number of refractive index
discontinuities inside leaf tissues. On the other
hand, with an increase in leaf quantity, red
reflectance decreases, due to increased absorption
by photosynthetic pigments. Many authors (Wu,
2014) found good correlations between VIs and
LAI. However, linear relationship between VIs and
LAI only occurs between growth stages and canopy
closure. After this situation, which varies
depending on the crop species and variety (usually
at a LAI of three), there is a saturation of the VI
value, independently of LAI increase (Scotford and
Miller, 2005).

Vegetation fraction is an important biophysical
parameter, able to document ecological and
environmental changes and thus relevant for
agricultural and forestry studies, environmental
management and land use. Fraction of vegetation
cover is frequently an input for many models such
as climate and soil erosion models. During crop
development there is usually a gradual increase in
crown cover and remote sensing can detect these
changes. Gitelson et al. (2002) used spectral VIs to
estimate cover fraction for wheat and corn.

When plants are at an early stage of
development they have low biomass, LAI and
canopy cover. Consequently, there is an important
contribution from the bare soil that forms the
background to the crop signal. As plants grow there
is an increase in the values of these biophysical
parameters which results in a reduction of red
reflectance and an increase in NIR reflectance.
Thus, as the growing season advances, the value of
spectral VIs increases. At full growth the greatest
rate of variation of the spectral reflectance from
different plant species occurs as each species has
developed its own canopy architecture and at the
same time there is minimal influence of
background. Each crop type has a characteristic
spectral signature which permits its discrimination
using remote sensing methods (Knipling, 1970). In
maturity and senescence there is a decrease in NIR
reflectance and an increase of red reflectance
(Haboudane et al., 2004). Due to this fact
vegetation spectral reflectance does not change
meaningfully between different species. As the
various crop species may take different time for full
development, it is important to have data on crop
state in a repetitive and updated form. Remote
sensing offers, due to the possibility of
multitemporal data collection, the opportunity to
study the evolution of vegetation spectral signature
over the growing season (each species has its own
hallmark), to elaborate the temporal response curve
for different VIs and thus of accompanying broad-
scale crop phenology from space  (Nellis et al.,
2009). Therefore it provides invaluable guidance to
farmers as regards crop harvest times and
associated logistics like transportation and
processing. In fact many crops need to be harvested
without delay as they reach maturity, in order to
provide the highest quality products, otherwise crop
quality deteriorates quickly.

Crop health
For an efficient agricultural exploration it is

essential to have timely and spatialized information
on crop health and vigor, besides crop seasonal
progress (Atzberger, 2013).  In fact crop vigor and
condition are early indicators of crop yield, crop
risk and ultimately of the degree of crop success.
Factors like diseases and pests affect a wide variety
of crops worldwide and result in significant yield
loss, which constitutes a serious limitation to any
forecasting method (Prasad et al., 2006). Some
authors report (Christou and Twyman, 2004;
Strange and Scott, 2005) that at least 10% of the
global food production is lost owing to plant
diseases. Disease and pest control could become
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more efficient if infected areas were identified as
early and accurately as possible. For example, in
many situations pesticides are applied excessively
which not only causes potential risks to the
agricultural products and the ecosystem but also
increases the cost of production (Zhang et al.,
2003). Diseases and pests have a dynamic nature
which hinders their detection in a timely manner.
Crop health monitoring can be undertaken using
traditional ground-based sampling, however, these
methods are labor intensive, have high costs and
low efficiency, hence being impractical for large
areas. In this context remote sensing has played an
important role in agriculture monitoring by
providing well-timed information on crop health
and vigor over extensive areas with relatively low
cost.

In order to identify modifications in plant
condition by remote sensing approaches it is
essential to be able to detect changes in the spectral
behavior of plants (Pinter et al., 2003). Diseases
and water and nutrients deficiency cause changes in
photosynthetic pigments, internal structure of the
leaves, foliar water and nutrient content. These
changes affect canopy reflectance characteristics
which can be detected by remote sensing (Raikes
and Burpee 1998; Nellis et al., 2009). Because of
the importance of leaves, variations in their
condition may offer important information
regarding the whole plant status. The reflectance
curve of leaves in the visible spectral region, as
earlier detailed, shows two minima: one in the blue
region and the other in the red region, due to the
intense absorption of sunlight by photosynthetic
pigments, essentially by chlorophylls (Hoffer,
1978; Boyer et al, 1988). Besides, in the NIR
spectral region healthy green vegetation is
characterized by high reflectance values.
Environmental stress conditions, diseases and
normal end-of-season senescence typically result in
yellowed or chlorotic leaves. These color changes
are due to a decrease in the production of
chlorophylls that then allow the expression of other
photosynthetic pigments such as carotenoids
(carotenes and xanthophylls). Chlorophylls tends to
decline more rapidly than carotenoids when plants
are under stress or during senescence (Sims and
Gamon, 2002; Kopacková et al., 2014).
Carotenoids have a single absorption peak in the
blue region, their presence being normally masked
by chlorophylls which also absorb radiation in the
blue region. These chemical changes cause
important variations in the spectral response of
leaves. There is a noticeable increase in visible
reflectance due to a reduction in the overall

absorption of visible light (there is a reduction in
green reflection and an increase in red and blue
reflections) and a broadening of the green
reflectance peak towards longer wavelengths
(Adams et al., 1999 in Pinter et al., 2003). When
crops are affected by diseases and stressful
conditions initial changes in the spectral behavior
occur in the visible region because of the sensitivity
of chlorophyll to physiological disturbances. There
may be also a decrease in NIR reflectance, although
proportionately less than the visible increase, due to
changes of foliar internal structure (Knipling, 1970;
Asner, 1998). These drastic changes in vegetation
signatures impact VIs values of vegetation which
are thus capable of indicating crop status as
respects health and vigor. With increasing stress
conditions the “red edge” feature (the abrupt
transition normally present between visible and
NIR reflectance values in the case of healthy green
vegetation) moves towards shorter wavelengths and
may even disappear in the case of senescent
vegetation (Pinter et al., 2003).

Stress and disease often result in the loss of
leaves or in their orientation. In this situation NIR
reflectance decreases quickly due to a reduction in
NIR enhancement of vegetation, owing to fewer
multiple leaf layers and also because of an increase
in background contribution (Knipling, 1970).
Plant–soil interactions (which result in water or
nutrient deficiency) may affect the chemical
properties of leaves and structural properties of
canopies, a fact that impacts decisively their
spectral behavior (Carvalho et al., 2013).

All the changes resulting from the incidence of
diseases of stress influence plant spectral behavior
and thus the value of spectral indices. In an “early
warning” approach the VI value for the current
growing season for each crop species can be
compared to the corresponding long-term value,
which will indicate if environmental conditions are
more or less favorable compared to the “usual”
situation (Atzberger, 2013). Remote sensing thus
enables precise diagnosis of crop stress, allowing
timely remedial action.

Pests and weeds monitoring and control
Weeds can significantly reduce crop yield if not

controlled. Clarke et al. (2000) in Scotford and
Miller (2005) report that a reduction of winter
wheat yields by 50% can happen due to weed
competition, a fact that understandably results in
high economic damages. The temporal aspect is
particularly important in weed control as the
application of treatments, for the best efficiency,
should take place on a well-defined and restricted



Emir. J. Food Agric. 2015. 27 (2): 138-151
http://www.ejfa.info/

146

period of time. In order to select the best type and
quantity of herbicide, the weed needs first to be
identified and its growth stage and density
determined (Scotford and Miller, 2005). In general
the most common arrangement of weeds in crop
fields is the patchy or aggregated distribution
(Felton, 1995 in Scotford and Miller, 2005), which
impedes their timely detection using ground
sampling methods. However, remote sensing
techniques can be used for weed identification and
localization. Biller (1998) in Scotford and Miller
(2005) refers an herbicide reduction amount of 30
to 70% in the context of a system based on
optoelectronic sensors to identify the weed plants,
as compared with conventional treatments and still
reported 100% weed control.

Since ancient times locust plagues have had a
negative impact on food security in vast arid and
semiarid regions of the world (Ji et al., 2004,
Zhenbo et al., 2008). While the outbreaks alone are
not responsible for famines, they can be an
important contributing factor. Clouds of locusts
have had tragic consequences in many countries,
with incalculable destruction of crops and natural
vegetation. Although in some areas control
measures have eliminated locust plagues in the 20th
century, they have become a serious problem again
in recent decades, the frequency and severity of the
damages caused being greater than before (Ji et al,
2004).

There are three forms in the life of these
insects: the egg form, the solitary form and the
gregarious form. The solitary form is wingless and
does not constitute a threat (Piou et al., 2013). In
this form individuals seem to avoid one another and
constitute low density populations (Sword et al.,
2010). However, due to favorable conditions, local
population size increases which results in close
contact among individuals. This triggers the shift
from the harmless solitarious form to the gregarious
winged sexually mature form (van Huis, 1995;
Sword et al., 2010). Then the insects reproduce and
develop quickly, as Ji et al. (2004) report, forming
vast swarms that have the ability to fly rapidly
across great distances and which, if not detected
and controlled in time, can have catastrophic effects
on agricultural production (Hielkema et al. 1986;
Piou et al., 2013). The transition from the solitary
to the gregarious phase is triggered by the
occurrence of favorable ecological conditions
caused by heavy rains able to provide enough
moisture for egg hatching and also for the growth
of vegetation that will make available food and
shelter for the grasshoppers (van Huis, 1995).

These insects, with high reproductive potential,
then multiply rapidly, in an exponential way,
forming numerous swarms that coalesce (Piou et
al., 2013). They leave their original area looking for
food and may reach distant territories (Tucker et al.,
1985). Thus, locust plague monitoring and control
are of international concern in order to guarantee
food security, given the catastrophic impacts of
outbreaks (Ji et al., 2004; Zhenbo et al., 2008).
Locust control should occur before the onset of the
gregarious phase or as soon as insects start
changing from the solitarious to the gregarious
phase, when insects still occur in small numbered
populations in reduced patches of favorable habitat
(Piou et al., 2013). In fact, the strategy for the
prevention of outbreaks occurrence is based on the
location of possible areas with ecological
conditions conducive to the rapid development of
the insect and application of control measures in
those areas, such as the application of insecticides,
while populations still have low density and
animals are wingless.

It is, therefore, essential to efficiently detect
areas where locusts form changes, known as
outbreak or recession areas as early as possible.
However, this may become a challenging task due
to the fact that the recession areas of the species are
very large (Hielkema et al., 1986; Ji et al., 2004;
Piou et al., 2013) and also because in those areas
rainfall is highly unpredictable. In fact, it is very
difficult and expensive, by traditional methods
alone, based on ground-based surveys, to gather
timely data of sufficient quality to accurately
evaluate locust population dynamics in order to
decide the optimum period for the application of
control measures (Showler, 2002; Ji et al., 2004;
Piou et al., 2013). An alternative to traditional
techniques is the use of satellite imagery. Locusts
cannot be identified directly with satellite images
due to their tiny size. However, the remote sensing
approach allows, over a large geographic scale, the
identification and monitoring of the ideal
conditions for the occurrence of outbreaks, that is,
an increase, to a key value, of soil moisture and
green vegetation (Ji et al., 2004; Zhenbo et al.,
2008; Piou et al., 2013). On the other hand, remote
sensing techniques allow quick damage assessment,
comprising both the identification of the areal
extent and the severity of losses (Ji et al., 2004).
Since the late 1970s, remote sensing techniques
have been used to detect potential outbreaks in
different areas (Tucker et al., 1985; Hielkema et al.,
1986; Ji et al., 2004). This approach has effectively
allowed the early reduction of swarms, thus
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preserving crops that would have otherwise been
lost (Zhenbo et al., 2008). Hielkema et al. (1986)
found good correlations between AVHRR NDVI
values indicating potential breeding areas and
locust population density in northwest Africa.
Zhenbo et al. (2008) successfully used MODIS
imagery to detect soil humidity in different areas in
China and related moisture values to locust
outbreaks. Also in China Ji et al. (2004) assessed
locust damage using NDVI derived from the
MODIS data. Their results showed that this VI
reliably distinguished between before outbreak
conditions and during outbreak destruction
conditions for different categories of damage.
However, authors like Tratalos and Cheke (2006) in
Piou et al. (2013) refer that NDVI data at coarse
resolution are not a good predictor of locust
presence.

Figure 2 summarizes the three main techniques
used on vegetation monitoring, especially based on
remote sensing possibilities.

Conclusions
Timely and accurate estimates of crop

production are crucial in order to develop well-
timed and robust policies and strategies for food
management that may guarantee food security.
Traditional methods of obtaining this information
consists in census and ground surveys which have
the disadvantages of being time consuming and
expensive. However, the use of remote sensing has
proved to be very important in the monitoring and
estimation not only of crop yield but also of crop
condition and state.
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Figure 2. Vegetation Monitoring techniques and main VIs used in remote sensing.



Emir. J. Food Agric. 2015. 27 (2): 138-151
http://www.ejfa.info/

148

References
Agapiou, A., D. G. Hadjimitsis and D. A. Alexakis.

2012. Evaluation of broadband and
narrowband vegetation indices for the
identification of archaeological crop marks.
Remote Sens. 4:3892-3919.

Ahamed, T., L. Tian, Y. Zhabg and K. C. Ting.
2011. A review of remote sensing methods for
biomass feedstock production. Biomass
Bioener. 35:2455-2469.

Asner, G. P. 1998. Biophysical and biochemical
sources of variability in canopy reflectance.
Remote Sens. Env. 64:234–253.

Atzberger, C. 2013. Advances in remote sensing of
agriculture: context description, existing
operational monitoring systems and major
information needs. Remote Sens. 5:949-981.

Baret, F. and G. Guyot. 1991. Potentials and limits
of vegetation indices for LAI and APAR
assessment. Remote Sen. Env. 35:161-173.

Barrett, E. C. and L. F. Curtis. 1982. Introduction to
environmental remote sensing.  Chapman and
Hall, Ltd., London. p.52.

Bartlett, D. S., M. A. Hardisky, R. W. Johnson, M.
F. Gross, V. Klemas and J. M. Hartman. 1988.
Continental scale variability in vegetation
reflectance and its relationship to canopy
morphology. Int. J. Remote Sens. 9:1223-
1241.

Becker-Reshef, I., E. Vermote, M. Lindeman and
C. Justice. 2010. A generalized regression-
based model for forecasting winter wheat
yields in Kansas and Ukraine using MODIS
data. Remote Sens. Env. 114:1312–1323.

Boyer, M., J. Miller, M. Belanger and E. Hare.
1988.  Senescence and spectral reflectance in
leaves of Northern Pin Oak (Quercus palustris
Muenchh.). Remote Sens. Env. 25:71-87.

Broge, N. H. and E. Leblanc. 2000. Comparing
prediction power and stability of broadband
and hyperspectral vegetation indices for
estimation of green leaf area index and canopy
chlorophyll density. Remote Sens. Env.
76:156–172.

Calvão, T. and J. M. Palmeirim. 2011. A
comparative evaluation of spectral vegetation
indices for the estimation of biophysical
characteristics of Mediterranean semi-
deciduous shrub communities. Int. J. of

Remote Sens. 32:2275-2296.

Camacho-De Coca, F., F. J. García-Haro, M. A.
Gilabert and J. Mélia. 2004. Vegetation cover
seasonal changes assessment from TM
imagery in a semi-arid landscape. Int. J.
Remote Sens. 25:3451–3476.

Carvalho, S., M. Schlerf, W. van der Putten and A.
K. Skidmore. 2013. Hyperspectral reflectance
of leaves and flowers of an outbreak species
discriminates season and successional stage of
vegetation. Int. J. App. Earth Observ.
Geoinfor. 24:32–41.

Christou, P. and R. M. Twyman. 2004. The
potential of genetically enhanced plants to
address food insecurity. Nutri. Res. Rev.
17:23–42.

Curran, P. J. 1983. Problems in the remote sensing
of vegetation canopies for biomass
estimation. In: R. Fuller (Ed.), pp. 84-100,
Ecological mapping from ground air and
space, Institute of Terrestrial Ecology, NERC.

Daughtry, C. S. T. and C. L. Walthall. 1998.
Spectral discrimination of Cannabis sativa L.
leaves and canopies. Remote Sens. Env.
64:192-201.

Daughtry, C. S. T., C. L. Walthall, M. S. Kim, E.
Brown de Colstoun and J. E. McMurtrey.
2000. Estimating corn leaf chlorophyll
concentration from leaf and canopy
reflectance. Remote Sens. Env. 74:229–239.

Doraiswamy, P. C., S. Moulin, S., P. W. Cook and
A. Stern. 2003. Crop Yield Assessment from
Remote Sensing. Photogram. Engine. Remote
Sens. 69:665–674.

FAO, IFAD and WFP. 2013. The State of Food
Insecurity in the World. The multiple
dimensions of food security. Rome, FAO.

Gao, X., A. R. Huete, W. Ni and T. Miura. 2000.
Optical-biophysical relationships of vegetation
spectra without background contamination.
Remote Sens. Env. 74:609–620.

Gitelson, A. A. 2004. Wide dynamic range
vegetation index for remote quantification of
biophysical characteristics of vegetation. J.
Plant Physiol. 161:165–173.

Gitelson, A., Y. Kaufman, R. Stark and D.
Rundquist. 2002. Novel algorithms for remote
estimation of vegetation fraction. Remote



Teresa Calvão and Maria Fernanda Pessoa

149

Sens. Env. 80:76–87.

Govaerts, Y., M. M. Verstraete, B. Pinty and N.
Gobron. 1999. Designing optimal spectral
indices: a feasibility and proof of concept
study. Int. J. Remote Sens. 20:1853-1873.

Goward, S. N., C. J. Tucker and D. G. Dye. 1985.
North American vegetation patterns observed
with the NOAA-7 Advanced Very High
Resolution Radiometer. Vegetatio. 64:3-14.

Goward, S. N., D. Dye, A. Kerber and V. Kalb.
1987. Comparison of North and South
American biomes from AVHRR observations.
Geocarto Internat. 1:27-39.

Grote, U. 2014. Can we improve global food
security? A socio-economic and political
perspective. Food Sec. 6:187–200.

Haboudane. D., J. R. Miller, E. Pattey, P. J. Zarco-
Tejada and I. B. Strachan. 2004. Hyperspectral
vegetation indices and novel algorithms for
predicting green LAI of crop canopies:
Modeling and validation in the context of
precision agriculture. Remote Sens. Env.
90:337–352.

Hardisky, M. A., R. M. Smart and V. Klemas.
1983. Seasonal spectral characteristics and
aboveground biomass of the tidal marsh plant,
Spartina alterniflora. Photogram. Engine.
Remote Sens. 49:85-92.

Hardisky, M. A., F. C. Daiber, C. T. Roman and V.
Klemas. 1984. Remote sensing of biomass and
annual net aerial primary productivity of a salt
marsh. Remote Sens. Env. 16:91-106.

Henry, M.C. and A. S. Hope. 1998. Monitoring
post-burn recovery of chaparral vegetation in
southern California using multi-temporal
satellite data. Internat. J. Remote Sens.
19:3097–3107.

Hielkema, J. U., J. Roffey and C. J. Tucker. 1986.
Assessment of ecological conditions
associated with the 1980/81 desert locust
plague upsurge in West Africa using
environmental satellite data. Int. J. Remote
Sens. 7:1609-1622.

Hoffer, R. M. 1978. Biological and physical
considerations in applying computer-aided
analysis techniques to remote sensor data. In:
P. H. Swain and S. M. Davis (Eds.), pp. 227-
289. Remote sensing: the quantitative
approach, edited by Mc Graw-Hill Book
Company.

Homolová, L., Z. Malenovský, J. G. P. W. Clevers,
G. García-Santos and M. E. Schaepman. 2013.
Review of optical-based remote sensing for
plant trait mapping. Ecol.l Complex. 15:1–16.

Howard, D. M., B. K. Wylie and L. L. Tieszen.
2012. Crop classification modelling using
remote sensing and environmental data in the
Greater Platte River Basin, USA. Int. J,
Remote Sens. 33:6094–6108.

Huete, A. R. 1988. A soil-adjusted vegetation index
(SAVI). Remote Sens. Env. 25:295–309.

Huete, A.R., C. O. Justice and H. Q. Liu. 1994.
Development of vegetation and soil indices for
MODIS-EOS. Remote Sens. Env. 49:224–
234.

Huete, A., C. Justice and W. Van Leeuwen. 1999.
MODIS Vegetation Index (MOD 13).
Algorithm theoretical basis document. Version
3. Available online at:http://modis.gsfc.
nasa.gov/data/atbd/atbd_mod13.pdf (accessed
15 May 2014).

Hurcom, S. J. and A. R. Harrison. 1998. The NDVI
and spectral decomposition for semi-arid
vegetation abundance estimation. Internat. J.
Remote Sens. 19:3109–3125.

Ji, R., B.-Y. Xie, D.-M. Li, Z. Li and X. Zhang.
2004. Use of MODIS data to monitor the
oriental migratory locust plague. Agric.
Ecosys. Environ. 104:615–620.

Johnson, D. M. 2014. An assessment of pre- and
within-season remotely sensed variables for
forecasting corn and soybean yields in the
United States. Remote Sens. Env. 141:116–
128.

Joyce, K. E., S. E. Belliss, S. V. Samsonov, S. J.
McNeill and P. J. Glassey. 2009. A review of
the status of satellite remote sensing and
image processing techniques for mapping
natural hazards and disasters. Prog. Physi.
Geogr. 33:183–207.

Kaufman, Y. J. and D. Tanre. 1992.
Atmospherically resistant vegetation index
(ARVI) for EOS-MODIS. IEEE Transact.
Geosci. Remote Sens. 30:260-270.

Knipling, E. B. 1970. Physical and physiological
basis for the reflectance of visible and near-
infrared radiation from vegetation. Remote
Sens. Env. 1:155-159.

Kopacková, V., J. Misurec, Z. Lhotáková, F.



Emir. J. Food Agric. 2015. 27 (2): 138-151
http://www.ejfa.info/

150

Oulehle and J. Albrechtová. 2014. Using
multi-date high spectral resolution data to
assess the physiological status of
macroscopically undamaged foliage on a
regional scale. Int. J. Appl. Earth Observ.
Geoinform. 27:169–186.

Liu, H. Q. and A. Huete. 1995. A feedback based
modification of the NDVI to minimize canopy
background and atmospheric noise. IEEE
Transact. Geosci. Remote Sens. 33:457–465.

Lobell, D. B., Asner, G. P., Ortiz-Monasterio, J. I.
and Benning, T. L. 2003. Remote sensing of
regional crop production in the Yaqui Valley,
Mexico: estimates and uncertainties. Agric.
Ecosys. Environ. 94:205–220.

Manevski, K., I. Manakos, G. P. Petropoulos and C.
Kalaitzidis. 2011. Discrimination of common
Mediterranean plant species using field
spectroradiometry. Int. J. App. Earth Observ.
Geoinform. 13:922–933.

Manjunath, K. R., M. B. Potdar and N. L. Purohit.
2002. Large area operational wheat yield
model development and validation based on
spectral and meteorological data. Int. J.
Remote Sens. 23:3023-3038.

Meroni, M., D. Fasbender, G. Pini, F. Rembold, F.
Urbano and M. M. Verstraete. 2014. Early
detection of biomass production deficit hot-
spots in semi-arid environment using FAPAR
time series and a probabilistic approach.
Remote Sens. Env. 142:57-68.

Milton, N. M. and D. A. Mouat. 1989. Remote
sensing of vegetation responses to natural and
cultural environmental conditions. Photogram.
Engine. Remote Sens. 55:1167-1173.

Mounzer, O. H., W. Conejero, E. Nicolás and I.
Abrisqueta. 2008. Growth pattern and
phonological stages of early-maturing peach
trees under a Mediterranean climate. Hortsci.
43:1813–1818.

Nellis, M. D., K. P. Price and D. Rundquist. 2009.
Remote sensing of cropland agriculture.
Papers in Natural Resources, Paper 217.
University of Nebraska–Lincoln. http://
digitalcommons.unl.edu/natrespapers/217.

Pinter, P. J. Jr., J. L. Hatfield, J. S. Schepers, E. M.
Barnes, M. S. Moran, C. S. T. Daughtry and
D. R. Upchurch. 2003. Remote Sensing for
Crop Management. Photogram. Eng. Remote
Sens. 69:647–664.

Piou, C., V. Lebourgeois, A. S. Benahi, V. Bonnal,
M. H. Jaavar, M. Lecoq and J.-M. Vassal.
2013. Coupling historical prospection data and
a remotely-sensed vegetation index for the
preventative control of Desert locusts. Basic
App. Ecol. 14:593–604.

Prasad, A., L. Chain, R. P. Singh and M. Kafatos.
2006. Crop yield estimation model for Iowa
using remote sensing and surface parameters.
Internat. J. Appl. Earth Observ. Geoinform.
8:26–33.

Qi, J., Y. Kerr and A. Chehbouni. 1994. External
factor consideration in vegetation index
development. In: Proceedings of the Sixth
International Symposium on Physical
Measurements and Signatures in Remote
Sensing, Val d’Ise´re, France, 1994, pp. 723–
730 (Amsterdam, The Netherlands: Harwood
Academic Publishers).

Raikes, C. and L. L. Burpee. 1998. Use of
multispectral radiometry for assessment of
Rhizoctonia blight in creeping bentgrass.
Phytopathol. 88:446-449.

Richards, J. A. 1993. Remote sensing digital image
analysis. An introduction. Springer-Verlag.
pp.340.

Rondeaux, G., M. Steven and F. Baret. 1996.
Optimization of soil-adjusted vegetation
indices. Remote Sens. Env. 55:95–107.

Roujean, J.-L. and F.-M. Breon. 1995. Estimating
PAR absorbed by vegetation from
bidirectional reflectance measurements.
Remote Sens. Env. 51:375–384.

Satterwhite, M. B. and J. P. Henley. 1987. Spectral
characteristics of selected soils and vegetation
in northern Nevada and their discrimination
using band ratio techniques. Remote Sens.
Env. 23:155-175.

Schmidt, H. and A. Karnieli. 2001. Sensitivity of
vegetation indices to substrate brightness in
hyper-arid environment: the Makhtesh Ramon
Crater (Israel) case study. Int. J. Remote Sens.
22:3503–3520.

Schneider, S. R. 1984. Renewable resources studies
using the NOAA polar-orbiting satellites. 35th
Congress of the International Astronautical
Federation, Lausanne, Switzerland.

Schneider, S. R., D. F. McGinnis and G. Stephens.
1985. Monitoring Africa´s Lake Chad basin
with LANDSAT and NOAA satellite data. Int.



Teresa Calvão and Maria Fernanda Pessoa

151

J. Remote Sens. 6:59-73.

Schmidt, H. and A. Karnieli. 2001. Sensitivity of
vegetation indices to substrate brightness in
hyper-arid environment: the Makhtesh Ramon
Crater (Israel) case study. Internat. J. Remote
Sens. 22:3503–3520.

Scotford, I. M. and P. C. H. Miller. 2005.
Applications of spectral reflectance techniques
in northern european cereal production: a
review. Biosys. Eng. 90:235–250.

Showler, A. T. 2002. A summary of control
strategies for the desertlocust, Schistocerca
gregaria (Forskål). Agric. Ecosys. Environ.
90:97–103.

Sims, D. A. and J. A. Gamon. 2002. Relationships
between leaf pigment content and spectral
reflectance across a wide range of species, leaf
structures and developmental stages. Remote
Sens. Env. 81:337– 354.

Sinclair, T. R., R. M. Hoffer and M. M. Schreiber.
1971. Reflectance and internal structure of
leaves from several crops during a growing
season. Agron. J. 63:864-868.

Strange, R. N. and  P. R. Scott. 2005. Plant Disease:
A Threat to Global Food Security. Annu. Rev.
Phytopathol. 40:83–116.

Sword, G. A., M. Lecoq and S. J. Simpson. 2010.
Phase polyphenism and preventative locust
management. J. Insect Physiol. 56:949–957.

Tucker, C. J. 1979. Red and photographic infrared
linear combinations for monitoring vegetation.
Remote Sens. Env. 8:127-150.

Tucker, C. J. and P. J. Sellers. 1986. Satellite
remote sensing of primary production. Int. J.
Remote Sens. 7:1395-1416.

Tucker, C. J., J. V. Hielkema and J. Roffey, J.
1985. The potential of satellite remote sensing
of ecological conditions for survey and
forecasting desert-locust activity. Int. J.

Remote Sens. 6:127-138.

Van Huis, A. 1995. Desert locust plagues.
Endeavour. 19:118-124.

Van Niel, T. G. and T. R. McVicar. 2004.
Determining temporal windows for crop
discrimination with remote sensing: a case
study in south-eastern Australia. Computers
Electron. Agric. 45:91–108.

Wall, L., D. Larocque and P.-M. Léger. 2008. The
early explanatory power of NDVI in crop
yield modelling. Int. J. Remote Sens.
29:2211–2225.

Wang, J., X. Li, L. Lu and F. Fang. 2013.
Estimating near future regional corn yields by
integrating multi-source observations into a
crop growth model. European J. Agron.
49:126–140.

Wu, W. 2014. The Generalized Difference
Vegetation Index (GDVI) for dryland
characterization. Remote Sens. 6:1211-1233.

Xie, Y., Z. Sha and M. Yu. 2008. Remote sensing
imagery in vegetation mapping: a review. J.
Plant Ecol. 1:9-23.

Yan, L. and D. P. Roy. 2014. Automated crop field
extraction from multi-temporal Web Enabled
Landsat Data. Remote Sens. Env. 144:42–64.

Zhang, M., Z. Qin, X. Liu and S. L. Ustin. 2003.
Detection of stress in tomatoes induced by late
blight disease in California, USA, using
hyperspectral remote sensing. Int. J. App.
Earth Observ. Geoinformation. 4:295–310.

Zhenbo, L., S. Xuezheng, E. Warner, G. Yunjian,
Y. Dongsheng, N. Shaoxiang and W. Hongjie.
2008. Relationship between oriental migratory
locust plague and soil moisture extracted from
MODIS data. Int. J. App. Earth Observ
Geoinform. 10:84–91.


