Colloidal and rheological behavior of aqueous dispersions of buriti tree (mauritia flexuosa) gum

Authors

  • Diego Aires da Silva Graduate Program in Food Science and Technology, Technology Institute, Federal University of Pará (UFPA), Postal code: 66075-110, Belém, PA, Brazil
  • Pedro Henrique Santos Chemical and Food Engineering Department, Santa Catarina Federal University (UFSC), Campus Trindade, Florianópolis, SC, Brazil
  • Rosinelson da Silva Pena Chemical and Food Engineering Department, Santa Catarina Federal University (UFSC), Campus Trindade, Florianópolis, SC, Brazil

DOI:

https://doi.org/10.9755/ejfa.2017.v29.i9.115

Keywords:

Buriti tree gum, colloidal properties, Mauritia flexuosa, rheology, viscosity

Abstract

The temperature, concentration and pH variables influence the aqueous dispersion of the gum properties. In this context, the aims of this research were to characterize the gum obtained from the buriti tree (Mauritia Flexuosa) trunk exudate, as well as to evaluate the colloidal and rheological behavior of the aqueous dispersions of this gum. Thus, the centesimal composition, absolute zeta (ζ) potential as a function of pH (1.2 to 4.0), particle size distribution, as well as the rheological properties of the gum at different temperatures (15, 20, 25, 30, and 40 °C) and concentrations (4, 5, 8, and 10% (m/v)) were studied. In addition, the Newton, Power Law, and Herschel-Bulkley models were fitted to the rheological data. Buriti tree gum (BG) was found to have 10.43% moisture, 5.05% ashes, 0.68% lipids, 3.09% proteins, and 80.76% carbohydrate. The aqueous dispersion of the gum (1%) had a ζ value of -17.1 mV with a tendency for greater stability at pH < 4 and polydisperse particle size distribution (45 nm to 648.1 nm diameter) with PDI (polydispersity index) of 1. The aqueous dispersion with 4 and 5% gum had typical Newtonian fluid behavior and became pseudoplastic at concentrations of 8 and 10%. The Herschel-Bulkley model had the best fit to the rheological data (r2 > 0.99). Gum dispersion viscosity decreased with higher temperature and lower concentration. The activation energy (Ea) value for gum dispersion ranged from 9.07 to 17.35 kJ/mol.

Downloads

Download data is not yet available.

References

Abdolmaleki, K., M. A. Mohammadifar, R. Mohammadi, G. Fadavi and N. M. Meybodi. 2016. The effect of pH and salt on the stability and physicochemical properties of oil-in-water emulsions prepared with gum tragacanth. Carbohydr. Polym. 140: 342-348.
Al-Assaf, S., M. Sakata, C. McKenna, H. Aoki and G. O. Phillips. 2009. Molecular associations in acacia gums. Struct. Chem. 20: 325.
Alghooneh, A., S. M. A. Razavi and F. Behrouzian. 2017. Rheological characterization of hydrocolloids interaction: A case study on sage seed gum-xanthan blends. Food Hydrocoll. 66: 206-215.
Andrews, B. 1993. Industrial gums. Polysaccharides and their derivatives. Food Chem. 48: 329.
AOAC. 1995. Official methods of analysis. 16th ed. Association of Official Analytical Chemists, Arlington, VA.
Bai, L., S. Huan, Z. Li and D. J. McClements. 2017. Comparison of emulsifying properties of food-grade polysaccharides in oil-in-water emulsions: Gum arabic, beet pectin, and corn fiber gum. Food Hydrocoll. 66: 144-153.
Bashir, M. and S. Haripriya. 2016. Assessment of physical and structural characteristics of almond gum. Int. J. Biol. Macromolec. 93: 476-482.
Bohmer, M. R., O. A. Evers and J.M. Scheutjens. 1990. Weak polyelectrolytes between two surfaces: adsorption and stabilization. Macromol. 23: 2288-2301.
Bonatto, C. C. and L. P. Silva. 2014. Higher temperatures speed up the growth and control the size and optoelectrical properties of silver nanoparticles greenly synthesized by cashew nutshells. Ind. Crops Prod. 58: 46-54.
Carneiro-da-Cunha, M. G., M. A. Cerqueira, B. W. Souza, J. A. Teixeira, and A. A. Vicente. 2011. Influence of concentration, ionic strength and pH on zeta potential and mean hydrodynamic diameter of edible polysaccharide solutions envisaged for multinanolayered films production. Carbohydr. Polym. 85: 522-528.
Cruz, R. C., A. M. Segadães, R. Oberacker and M. J. Hoffmann. 2017. Double layer electrical conductivity as a stability criterion for concentrated colloidal suspensions. Colloids Surf, A. 520: 9-16.
Eddy, N. O., I. Udofia, A. Uzairu, A. O. Odiongenyi and C. Obadimu. 2014. Physicochemical, Spectroscopic and Rheological Studies on Eucalyptus Citriodora (EC) Gum. J. Pol. Biopol. Phys. Chem. 2: 12-24.
Eren, N. M., P. H. Santos and O. Campanella. 2015. Mechanically modified xanthan gum: Rheology and polydispersity aspects. Carbohydr, Polym. 134: 475-484.
Fadavi, G., M. A. Mohammadifar, A. Zargarran, A. M. Mortazavian and R. Komeili. 2014. Composition and physicochemical properties of Zedo gum exudates from Amygdalus scoparia. Carbohydr. Polym. 101: 1074-1080.
Felix, M., A. Romero and A. Guerrero. 2017. Viscoelastic properties, microstructure and stability of high-oleic O/W emulsions stabilised by crayfish protein concentrate and xanthan gum. Food Hydrocoll. 64: 9-17.
Gong, H., M. Liu, J. Chen, F. Han, C. Gao and B. Zhang. 2012. Synthesis and characterization of carboxymethyl guar gum and rheological properties of its solutions. Carbohydr. Polym. 88: 1015-1022.
Goycoolea, F., E. Morris, R. Richardson and A. Bell. 1995. Solution rheology of mesquite gum in comparison with gum arabic. Carbohydr. Polym. 27: 37-45.
Imam, S. H., C. Bilbao-Sainz, B. S. Chiou, G. M. Glenn and W. J. Orts. 2013. Biobased adhesives, gums, emulsions, and binders: current trends and future prospects. J. Adhes. Sci. Technol. 27: 1972-1997.
Ishikawa, Y., Y. Katoh and H. Ohshima. 2005. Colloidal stability of aqueous polymeric dispersions: effect of pH and salt concentration. Colloids Surf., B. 42, 53-58.
Li, J. M. and S. P. Nie. 2016. The functional and nutritional aspects of hydrocolloids in foods. Food Hydrocoll. 53: 46-61.
Malvern, I. 2004. Zetasizer nano series user manual. Malvern Instruments Ltd., Worcestershire.
Maranzano, B. J. and N. J. Wagner. 2001. The effects of interparticle interactions and particle size on reversible shear thickening: Hard-sphere colloidal dispersions. J. Rheol. 45: 1205-1222.
Mirhosseini, H., C. P. Tan, N .S. Hamid and S. Yusof. 2008. Optimization of the contents of Arabic gum, xanthan gum and orange oil affecting turbidity, average particle size, polydispersity index and density in orange beverage emulsion. Food Hydrocoll. 22: 1212-1223.
Mothe, C. and M. Rao. 1999. Rheological behavior of aqueous dispersions of cashew gum and gum arabic: effect of concentration and blending. Food Hydrocoll. 13: 501-506.
Muñoz, J., F. Rincon, M .C. Alfaro, I. Zapata, J. Fuente, O. Beltrán and G. L. Pinto. 2007. Rheological properties and surface tension of Acacia tortuosa gum exudate aqueous dispersions. Carbohydr, Polym. 70: 198-205.
Naji-Tabasi, S. and S. M. A. Razavi. 2015. New studies on basil (Ocimum bacilicum L.) seed gum: Part III–Steady and dynamic shear rheology. Food Hydrocoll. 67: 243-250.
Nussinovitch, A. 2010. Plant gum exudates of the world. CRC Press, Boca Raton.
Nwokocha, L. M. and P. A. Williams. 2016. Rheological properties of a polysaccharide isolated from Adansonia digitata leaves. Food Hydrocoll. 58: 29-34.
Oliveira, J., D. Silva, R. De Paula, J. Feitosa and H. Paula, 2001. Composition and effect of salt on rheological and gelation properties of Enterolobium contortisilliquum gum exudate. Int. J. Biol. Macromolec. 29: 35-44.
Paraskevopoulou, A., D. Boskou and V. Kiosseoglou. 2005. Stabilization of olive oil-lemon juice emulsion with polysaccharides. Food Chem. 90: 627-634.
Paula, R., S. Santana and J. Rodrigues. 2001. Composition and rheological properties of Albizia lebbeck gum exudate. Carbohydr. Polym. 44: 133-139.
Phillips, G. O. 2000. Colloids: A partnership with nature A2 – Nishinari, Katsuyoshi, Hydrocolloids. Elsevier Science, Amsterdam.
Rao, A. 2013. Rheology of fluid, semisolid, and solid foods: principles and applications. 3rd ed. Springer, New York.
Rao, A. M. 1999. Rheology of fluid and semisolid fluids: Principles and applications. Aspen Publication, Gaithersburg, MD.
Sharma, V. K., B. Mazumdar. 2013. Feasibility and characterization of gummy exudate of Cochlospermum religiosum as pharmaceutical excipient. Ind. Crops Prod. 50: 776-786.
Sibaja-Hernández, R., A. Román-Guerrero, G. Sepúlveda-Jiménez and M. Rodríguez-Monroy. 2015. Physicochemical, shear flow behaviour and emulsifying properties of Acaciacochliacantha and Acaciafarnesiana gums. Ind. Crops Prod. 67: 161-168.
Silva, F. C., D. H. P. Guimarães and C. Gasparetto. 2005. Rheology of acerola juice: effects of concentration and temperature. Ciênc. Tecnol. Aliment. 25: 121-126.
Smith, N. 2014. Palms and People in the Amazon. Springer, Gainesville.
Steffe, J. F. 1996. Rheological methods in food process engineering, 2nd ed. Freeman Press, Michigan.
Tako, M. 2015. The principle of polysaccharide gels. Adv. Biosci. Biotechnol. 6: 22.
Tonon, R., D. Alexandre, M. Hubinger, R. Cunha. 2009. Steady and dynamic shear rheological properties of açai pulp (Euterpe oleraceae Mart.). J. Food Eng. 92: 425-431.
Vasile, F. E., M. J. Martinez, V. M. P. Ruiz-Henestrosa, M. A. Judis and M. F. Mazzobre. 2016. Physicochemical, interfacial and emulsifying properties of a non-conventional exudate gum (Prosopis alba) in comparison with gum arabic. Food Hydrocoll. 56: 245-253.
Yaseen, E., T. Herald, F. Aramouni and S.Alavi. 2005. Rheological properties of selected gum solutions. Food Res. Int. 38: 111-119.
Zhu, L., N. Sun, K. Papadopoulos and D. De Kee. 2001. A slotted plate device for measuring static yield stress. J. Rheol. 45: 1105-1122.
Zimeri, J. and J. Kokini. 2003. Rheological properties of inulin–waxy maize starch systems. Carbohydr. Polym. 52: 67-85.

Published

2017-10-17

How to Cite

da Silva, D. A., P. H. Santos, and R. da S. Pena. “Colloidal and Rheological Behavior of Aqueous Dispersions of Buriti Tree (mauritia Flexuosa) Gum”. Emirates Journal of Food and Agriculture, vol. 29, no. 9, Oct. 2017, pp. 716-23, doi:10.9755/ejfa.2017.v29.i9.115.

Issue

Section

Regular Articles