Development of a new bread type supplemented iron and folic acid– Chemical and technological characterization

Authors

  • Patricia Antunes Earth Sciences Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa. Campus da Caparica, 2829-516 Caparica
  • Fernando Cebola Lidon Earth Sciences Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa. Campus da Caparica, 2829-516 Caparica., Portugal ; GeoBioTec Research Unit, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa. Campus da Caparica, 2829-516 Caparica, Portugal.
  • Isabel Pais GeoBioTec Research Unit, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa. Campus da Caparica, 2829-516 Caparica, Portugal. ; INIAV - Instituto Nacional de Investigação Agrária e Veterinária, Oeiras, 2780-157, Portugal.
  • Maria Manuela Silva GeoBioTec Research Unit, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa. Campus da Caparica, 2829-516 Caparica, Portugal. ; Escola Superior de Educação Almeida Garrett, Avenida do Campo Grande, nº 376, 1749-024, Lisboa, Portugal.
  • José Cochicho Ramalho GeoBioTec Research Unit, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa. Campus da Caparica, 2829-516 Caparica, Portugal. ; Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, 2784-505 Oeiras and Tapada da Ajuda, 1349-017 Lisboa, Portugal.
  • Paula Scotti Campos GeoBioTec Research Unit, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa. Campus da Caparica, 2829-516 Caparica, Portugal. ; INIAV - Instituto Nacional de Investigação Agrária e Veterinária, Oeiras, 2780-157, Portugal.
  • Ana Sofia Bagulho GeoBioTec Research Unit, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa. Campus da Caparica, 2829-516 Caparica, Portugal. ; INIAV - Instituto Nacional de Investigação Agrária e Veterinária, Polo de Elvas, MADRP, Portugal.
  • José Moreira INIAV - Instituto Nacional de Investigação Agrária e Veterinária, Polo de Elvas, MADRP, Portugal.
  • Maria Manuela Simões Earth Sciences Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa. Campus da Caparica, 2829-516 Caparica. Portugal ; GeoBioTec Research Unit, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa. Campus da Caparica, 2829-516 Caparica, Portugal.
  • Maria Fernanda Pessoa Earth Sciences Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa. Campus da Caparica, 2829-516 Caparica. Portugal ; GeoBioTec Research Unit, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa. Campus da Caparica, 2829-516 Caparica, Portugal.
  • Fernando Henrique Reboredo Earth Sciences Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa. Campus da Caparica, 2829-516 Caparica. Portugal ; GeoBioTec Research Unit, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa. Campus da Caparica, 2829-516 Caparica, Portugal.

DOI:

https://doi.org/10.9755/ejfa.2020.v32.i12.2217

Abstract

Bread is a staple food prepared by baking a dough of flour and water. The virtually infinite combinations of different flours and differing proportions of ingredients has resulted in the wide variety of types, shapes, sizes, and textures available around the world. Considering the worldwide consume of this staple food, this study aimed to develop and assess the chemical and technological characteristics of a new biofortified blend, containing wheat, locust bean flours, iron and folic acid (applied in the form of powder or microcapsules), for the production of bread with nutritional and prophylactic characteristics for human health. Besides bread wheat properties for baking, locust wheat flours was added to the blend in a small amount (0.5%) to increase water absorbance through its polar amino groups of proteins, whereas folic acid and iron inclusion considered the human needs on a daily basis. An 85.89- and 3.93-fold increases for folic acid and iron was carried out through fortification. It was found that, relatively to wheat flour T65, the contents of some minerals (Ca, K, Si), fatty acids (C16:0, C16:1, C18:0, C18:1; C20:1) and sugars (raffinose, sucrose, glucose and fructose) were significantly higher in locust bean flour. Upon blends iron and folic acid fortification, toughness, deformation work / gluten strength and the elasticity index prevailed when powder was used, whereas minimum values were obtained for ash, toughness and gluten strength in the standard blend. Moreover, significant differences were not found for fatty acids. In bread biofortified with folic and iron in the form of powder, all fatty acids (excepting C18:2 and C18:3) prevailed, but lower values were found for sugars and total soluble solids. Moreover, breads height, weight, specific volume remained higher in standard bread, but upon application of benzoic acid or methyl 4-hydroxybenzoate lower shelf life values were found. Although from a hedonic perspective, consumers preferred the standard bread, the biofortified blend revealed a high-quality index suitable for development of a functional staple food incorporating iron and folic acid (in the form of powder or microcapsules). Nevertheless, folic acid as proved to be highly labile during baking, but incorporation of microcapsules slightly limited this degradation. Considering the shelf life of the biofortified bread, pulverization with methyl p-hydroxybenzoate seemed to be the most effective additive.

Downloads

Download data is not yet available.

References

Akubor, P. I. 2016. Chemical composition and functional properties of African locust bean flour pulp flour and wheat flours. Trends Sci. Techn. J. 1(1): 248-253.

Almeida, I., E. Costa and R. Guine. 2010. Caracterização bioquímica e fúngica de peras secadas por diferentes processos. Abstracts of the 1º Encontro Português de Secagem de Alimentos. Viseu, Portugal.

AOAC 960.46 – International. 2005. Official methods of analysis, 18th Ed., method, Gaithersburg, MD, USA.

AOAC – International. 2005. Official methods of analysis, 18th Ed., method 2004.05, Gaithersburg, MD, USA.

Bagulho, A. S. 2008. Efeito das proteínas de reserva e das associadas ao amido e aos lípidos nas propriedades reológicas da farinha de trigo mole. Universidade Técnica de Lisboa, (Doctoral Thesis) Instituto Superior de Agronomia, Lisbon, Portugal.

Ball, G. 2004. Vitamins. Their role in the human body. New York: Blackwell Publishing.

Becker, R. 2007. Fatty acids in foods and their health implications. 3rd ed. CRC Press, Boca Raton, Florida.

Brouwer, P. 2013. Theory of XRF-getting acquainted with the principles. Panalytical B.V, The Netherlands.

Dias, A. S., F. C. Lidon and J. C. Ramalho. 2009a. I. Heat stress in Triticum: Kinetics of Ca and Mg accumulation. Braz. J. Plant Physiol. 21: 123-134.

Dias, A. S., F. C. Lidon and J. C. Ramalho. 2009b. III. Heat stress in Triticum: Kinetics of Na, K and P accumulation. Braz. J. Plant Physiol. 21: 143-152.

El-Dash, A. C. O. Ahmed, N. Camargo and M. Diaz. 1990. Composição química do grão de trigo e da farinha In: Fundamentos da tecnologia de panificação. Secretaria da Industria, Comércio, Ciência e Tecnologia Eds, São Paulo, Brasil.

Enwere, N. J. 1998. Foods of plant origin. Afro-Orbis Publications Ltd. Pp. 194-199.

Freitas, A. C. and P. Figueiredo. 2000. Conservação de alimentos. Available from: http://www.users/fjl/downloads/freitas-%20 figueiredo-%202000%20-%20conservacao%20dos%20 alimentos%20-%20livro.pdf. [Last accessed on 2019 Jul].

Guarienti, E. M. 1996. Qualidade industrial do trigo. 2nd ed. EMBRAPA-CNPT, Passo Fundo, Brasil.

ISO 712: 2009. Cereals and cereal products - Determination of moisture content - Reference method. International Standardization Organization, 16.

ISO 2171: 2007. Cereals, pulses and by-products - Determination of ash yield by incineration. International Standardization Organization, 11.

ISO 3093-E: 2009. Wheat, rye and their flours, durum wheat and durum wheat semolina- Determination of the falling number according to Hagberg-Perten. International Standardization Organization, 13.

ISO 5530: 2013. Wheat flour -- Physical characteristics of doughs - Part 1: Determination of water absorption and rheological properties using a farinograph. International Standardization Organization, 26.

ISO 13299: 2016. Sensory analysis - Methodology - General guidance for establishing a sensory profile. International Organization for Standardization, 41.

ISO 20483: 2013. Cereals and pulses - Determination of the nitrogen content and calculation of the crude protein content - Kjeldahl method. International Organization for Standardization, 13.

ISO 21415-1: 2006. Wheat and wheat flour - Gluten content - Part 1: Determination of wet gluten by a manual method. International Standardization Organization, 9.

ISO 21415-4-E: 2006. Wheat and wheat flour - Gluten content- Part 4: Determination of dry gluten from wet gluten by a rapid drying method. International Standardization Organization, 6.

ISO 27971-E: 2008. Cereals and cereal products- Common wheat (Triticum aestivum L.) Determination of alveograph properties of dough at constant hydration from commercial or test flours and test milling methodology. International Standardization Organization, 52.

Kinsella, J.E. 1981. Functional properties of protein: Possible relationship between structure and function in foods. Food Chem. 7: 273-288.

Lidon, F. C., D. Daccak, P. Scotti-Campos, M. M. Silva, A. S. Bagulho, I. Pais, C. Galhano, J. C. Ramalho, J. Moreira, M. F. Pessoa and F. H. Reboredo. (2019). An integrated chemical and technological approach for assessing portuguese wheat flours quality and lengthening bread shelf-life. Emir. J. Fd Agric. 31(11): 884-894.

Lidon, F. C. and M. M. A. Silvestre. 2010. Princípios de nutrição e alimentação humana. Escolar Editora, Lisboa, Portugal.

Lieberman, S. and N. Brunning. 2003. Real vitamin and mineral book. Penguin Books, New York, USA.

Lopera, S., C. Guzmáno, C. Catano and C. Gallardo. 2009. Desarrollo y caracterización de micropartículas de ácido fólico formadas por secado por aspersión, utilizando goma arábiga y maltodextrina como materiales de pared. Revista de la Facultad de Química Farmacéutica, Universidad de Antioquia, Colômbia, 16(1): 55-65.

Lucas, I., H. Petermeier, T. Becker and M. Jekle. 2019. Definition of network types prediction of dough mechanical behaviour under shear by gluten microstructure. Sci. Rep. 9: 4700.

Lund, E. D. and J. M. Smith. 1982. Dietary fiber content of some tropical fruits and vegatables. J. Agric Food Chem., 30: 1123-1127.

Medlicott, A. P. and A. K. Thompson. 1985. Analysis of sugars and organic acids in ripening of mango fruit (Mangifera indica L. var Keitt) by high-performance liquid chromatography. J. Sci. Fd Agric. 36: 561-566.

Metcalfe, L. D., A. A. Schemitz and J. R. Pelka.1966. Rapid preparation of fatty-acids esters from lipids for gas chromatographic analysis. Anal. Chem. 38: 514-515.

Oakley Jr, G. P. 2002. Global Prevention of all Folic Acid-preventable spina bifida and anencephaly by 2010. Community Genet. 5(1): 70-77.

Peterson, C. J., V. A. Johnson and P. J. Mattern. 1983. Evaluation of variation in mineral element concentrations in wheat flour and bran of different cultivars. Cereal Chem. 60: 450-455.

Portuguese Standard 2100 – 3. 2003. Cereais e derivados. Método expedito de ensaio de panificação com “Máquina Automática de Fazer Pão”. Lisboa. Instituto Português da Qualidade, 6.

Reboredo, F. H., J. Pelica, F. C. Lidon, J. C. Ramalho, M. F. Pessoa, T. Calvão, M. Simões and M. Guerra. 2018. Heavy metal content of edible plants collected close to an area of intense mining activity (Southern Portugal). Envir. Monitoring Assess. 190: 484.

Rennan, G. O., S. M. M. Araújo, M. G. A. Korn, M. F. Pimentel, R. E. Brun and S. L. C. Ferreira. 2008. Mineral composition of wheat flour consumed in brazilian cities. J. Braz. Chem. Soc. 19: 936-942.

Rao, K.A. and J. R. Pillai. 2006. Recurrent pregnancy loss. J. Indian. Med. Assoc. 104(8): 458-461.

Remelgado, T. L. T. 2016. Qualidade e segurança alimentar no fabrico de farinhas de trigo. Relatório de Estágio Profissionalizante, Escola Superior Agrária. Coimbra, Portugal.

Scheuer, P. M., A. Francisco, M. Z. Miranda and V. M. Limberger. 2011. Trigo: Características e utilização na panificação. Rev. Bras. Prod. Agroind. 13: 211-222.

Scholl, T.O. and W. G. Johnson. 2000. Folic Acid: Influence on the outcome of pregnancy. Am. J. Clin. Nutr. 71(5 Suppl): 1295S-1303S

Sgarbieri, V. C. 1987. Alimentação e nutrição - fator de saúde e desenvolvimento. UNICAMP, São Paulo, Almed, Brasil.

Silva, R. C. 2003. Qualidade tecnológica e estabilidade oxidativa de farinha de trigo e fubá irradiados. (Master Thesis) Universidade de São Paulo, Brasil.

Silva, M. M. and F. C. Lidon. 2016. Food preservatives an overview on applications and side effects. Emir. J. Food Agric. 28: 366-373.

Silva, R. C., L. M. Pino, M. H. F. Spoto and M. A. B. D’Arce. 2010. Oxidative and sensorial stability of radiated wheat and corn flour. Food Sci. Technol. 30: 406-413.

Stanley, P. C. 2007. Wheat and flour testing methods: A guide to understanding wheat and flour quality. Wheat Marketing Center, Inc., Portland, Oregon USA.

Zayas, J. F. and C. S. Lin. 1989. Water retention of two types of hexane-defatted corn germ proteins and soy protein flour. Cereal Chem. 66: 51-55.

Zhurasvskaya, N. A., E. V. Kiknadze, Yu A. Antonov and V. B. Toistoguzov. 1986. Concentration of proteins as a result of the phase separation of water‐protein‐polysaccharide systems Part 2. Concentration of milk proteins. Food/Nahrung, 30(6): 601-613.

Published

2020-11-08

How to Cite

Antunes, P., F. C. Lidon, I. Pais, M. M. Silva, J. C. Ramalho, P. S. Campos, A. S. Bagulho, J. Moreira, M. M. Simões, M. F. Pessoa, and F. H. Reboredo. “Development of a New Bread Type Supplemented Iron and Folic acid– Chemical and Technological Characterization”. Emirates Journal of Food and Agriculture, vol. 32, no. 12, Nov. 2020, pp. 846-5, doi:10.9755/ejfa.2020.v32.i12.2217.

Issue

Section

Research Article

Most read articles by the same author(s)

1 2 3 > >>