
Emir. J. Food Agric ● Vol 30 ● Issue 6 ● 2018 451

Crop improvement strategies for mitigation of methane 
emissions from rice
Divya Balakrishnan, Kalyani Kulkarni, P. C. Latha, D. Subrahmanyam
Indian Institute of Rice Research, Hyderabad, India

INTRODUCTION

Evidence of  imminent climate change is undeniable. An 
increasing drift in Global Mean Surface Temperature (GMST) 
was quite obvious after 2000 as it is recorded that each decade 
is warmer than its preceding one. The global maximum and 
minimum temperature have increased since 1951 (IPCC 
2013) and increasing concentrations of  the greenhouse gases 
are the significant indicators of  global warming and climate 
change (Denman et al. 2007). Agriculture and climate change 
have significant impacts on each other. The latent effects of  
climate change on agriculture have motivated international 
research towards this direction (Aydinalp and Cresser 
2008). The phenomenon of  greenhouse effect is natural 
and necessary to support life on earth; however frequent 
extreme weather conditions, increased greenhouse gases 
in the atmosphere are affecting the ecosystems adversely 
(EPA 2012). Change in climate, results in the alteration of  
vegetation type, distribution and coverage. Shift in regional 

precipitation and warmth has profound effects on plant 
growth and development. Global warming and augmented 
CO2 concentration together result in high productivity due 
to increased photosynthesis (Jagadish et al. 2007; Gerardeaux 
et al. 2012). However, in spite of  these beneficial effects, 
combination of  elevated temperature with unpredictable 
precipitation would negatively influence food production. 
Changes in temperature will result in early flowering and 
fruiting and in reverse, cold temperatures will leads to slow 
down of  bio cycles of  organisms (Porter and Semnov,  
2005). It was reported that there was a 1% decline in global 
net agricultural production during 2000 to 2009 compared 
to a 6% increase in the previous decade (1982 to 1999). 
A reduction of  10-40% in crop production is predicted 
for Indian subcontinent by 2080-2100 due to temperature 
variations (Aggarwal 2008).

About 20% of  the yearly contribution of  carbon dioxide 
(CO2), methane (CH4) and nitrous oxide (N2O) gas 
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emissions is from agriculture sector (IPCC 2007). Methane 
has high global warming potential, 25 times than that 
of  CO2 and it also absorbs more energy than CO2. CH4 
is a precursor of  ozone, which is another important 
greenhouse gas. The mean global CH4 concentration in 
the atmosphere in January, 2016 was 1842.3 ppm which 
increased to 1851.4 ppm in January, 2017 (Dlugokencky, 
NOAA/ESRL/www.esrl.noaa.gov/gmd/ccgg/trends_
ch4/). Major contributors of  methane from agriculture 
are inundated rice fields, crop residue burning, livestock 
rearing and allied manure management. Methane emissions 
from paddy fields were reported in 1913 by Harrison 
and Aiyer, but comprehensive studies were conducted 
after 1913 (Cicerone and Shetter 1981; Seiler et al., 1984; 
Holzapfel-Pschorn et al., 1985; Schutz et al., 1989; Bayer 
et al., 2014; Mendelsohn 2014; Tang et al., 2015; Han 
et al., 2016; Brye et al., 2016). Previous reports show an 
urgent need to design strategies for methane mitigation 
and detection of  suitable cropping patterns and genotypes 
for the vulnerable areas. In this paper we discuss methane 
emission mitigation strategies with a special focus on the 
role of  genotypic improvement.

Rice and climate change
Rice has been playing major role in global food security 
since time immemorial (Biswajit et al., 2013; Mohanty et al., 
2013). More than 114 countries produce rice (FAO 2013) in 
diverse ecosystems and in the widest range of  altitudes and 
latitudes across the globe (Nguyen 2005). Rice crop with 
no limitation in its growing conditions survived centuries 
over adverse conditions and number of  biotic and abiotic 
stresses. Significant improvement in the production, area 
under cultivation and consumption was observed in the 
last century due to its wide genetic diversity, adaptation and 
accelerated evolution by a large international community 
of  researchers dedicated to this single crop.

Climate change has serious impact on rice production and, 
consecutively, rice fields are contributing to global warming 
through methane emissions. There will be a predicted 
positive influence of  climate change on rice production in 
specific areas of  temperate regions of  northern hemisphere 
but overall negative effect on the global net production. 
The global warming effects like frequent droughts, higher 
temperatures, flooding, salinity, increased carbon dioxide 
levels, rise in sea-level, irregular rainfall patterns and shifting 
of  pest dynamics has been found to contribute negatively 
to rice production. Research studies at IRRI, Philippines 
indicated that a rise in 1OC night temperature cause 10% 
reduction in rice yield. Increased atmospheric CO2 and 
1degree rise in temperature have been shown to increase 
GHG intensity by 31.4% and 11.8% respectively and 
decreases rice yield (van Groenigen et al., 2013). Global 
mean crop yields of  major staple food crops including 

rice are predicted to decline from 3-10% per degree of  
temperature rise above historical levels (Challinor et al., 
2014). As a result of  climate change, decline in rice yields 
to a level of  15% and a subsequent 12% increase in rice 
prices, is forecasted by International Food Policy Research 
Institute (IFPRI) by 2050 in developing countries while the 
rice production is expected to increase to feed the ever-
growing global population. IFPRI, 2010 forecasted a 31.2% 
price hike for rice even in the optimistic scenario from 2010 
to 2050 with a detrimental effect on global food security. 
Reduction in 48.63% of  land productivity by the year 2100 
was estimated by Kumar et al., 2016, based on simulation 
techniques considering the effects of  climate change. In 
Asia, where rice is grown in a comparatively larger area and 
is the primary food of  majority, adverse production and 
accessibility will cause major food scarcities.

Being a crop which is grown majorly in irrigated flooded 
ecosystem, rice is mainly criticised for two interrelated 
components contributing to climate change, i.e. methane 
emissions and low water productivity. The methane 
emissions in rice field depend on various factors like 
cultivars, microorganisms in the root zone, soil under 
cultivation and other agricultural practices like water 
management, manure and fertilizer application. CH4 
production in rice fields is also contributed by decaying 
plant-borne tissues and root exudates in the anaerobic 
conditions. It was reported that, transport of  over 90% of  
methane to the atmosphere, is through rice plants (Banker 
et al., 1995). During the production of  1 kg of  rice grain, 
100 g of  methane is emitted. The default methane baseline 
emission factor is 1.3 kg CH4 ha-1 day-1, in continuous 
flooding rice cultivation (IPCC, 2006). However, Pathak 
(2015) reported that the methane emissions from Indian 
rice field had remained almost constant from 1970 to 2010, 
though the total rice production had increased from 115 
to 128 Mt during the same period.

Adapting to climate change, there is a demand to substitute 
rice with crops having minimal water requirement. Even a 
gradual replacement of  rice will have detrimental impacts 
on social, cultural, economic and political scenarios, 
especially in south Asian countries. Conversely, rice 
consumption was increased in non-traditional areas outside 
Asia and displaced major staple food crops in Africa in 
the last few decades (Mohanty et al., 2013). Even though, 
there is much focus and concentrated efforts are made 
for breeding climate smart rice to cope up with alarming 
conditions of  drought and temperature, there are only 
limited studies available for genetic enhancement to 
mitigate methane emission.

Combining adaptation and mitigation strategies is a way 
forward to meet future food security goals while minimizing 
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further impacts on climate change and emissions due to food 
production (Campbell et al., 2016). Numerous studies on 
effect of  various agronomic and management practices to 
mitigate methane emissions from paddy fields are reported. 
Malyan et al., 2016 reviewed influencing factors and basic 
strategies for methane mitigation in paddy cultivation and 
concluded that breeding for improved rice varieties with 
low CH4 emission is a potential mitigation option. Radical 
changes in crop management without considering the 
genotypic effect may be detrimental in meeting global food 
demands. As methane emission is contributed by interactions 
of  genotype, microorganisms, water and soil conditions; 
independent analysis of  these factors for emission may 
result in biased estimates. Future studies have to be focused 
more on understanding the mechanisms and interactions of  
various factors and their actual contribution to the methane 
emissions. As it is evident from the role of  plant breeding in 
green revolution and global food security, there is a need of  
crop improvement interventions in the problems of  global 
climate change along with crop production and management 
practices for significant outcome. As a direct option, 
the genotypic/varietal differences in methane emission 
should be explored on a large scale. The morphological, 
physiological and microbiological factors also need to be 
dissected and utilized in crop improvement. It is necessary 
to breed high yielding rice varieties with reduced green house 
gas emissions, which are adaptable to the essential soil and 
water management conditions.

Methane emissions from rice field
Rice cultivation plays a major role in global warming 
by green house gas emissions (Neue, H. 1993; Sass and 
Cicerone 2002; Jain et al., 2004; Linquist et al., 2012; 
Gaihre et al., 2013; Pittelkow et al., 2013). Matthews et al., 
1991, identified that 55% of  the annual methane emission 
over rice growing areas is concentrated into four months, 
from July to October i.e. the predominant rice cultivation 
season. Even though the methane emission in paddy 
fields is influenced by various factors; genotypic variation 
contributed more and substantial differences up to 56% 
among cultivars (Gogoi et al., 2008). Deviation in methane 
efflux among rice cultivars from the paddy fields could 
be attributed from variability in gas transport potential, 
metabolic activity and plant architecture (Sigren et al., 1997; 
Huang et al., 1998). Ma et al., (2012), analysed emissions 
of  different rice cultivars at seedling stage and reported 
that methane emission was affected by varietal traits and 
crop density. Rice cultivars show a range of  variation for 
transport of  oxygen and cause difference in redox potential 
at rice rhizosphere and, thereby, variation in methane 
oxidation (Flessa and Fisher, 1992; Kludze et al., 1993).

Significant variations were observed between rice fields 
growing different rice cultivars for methane emissions 

which could be ascribed to the deviations in their methane 
metabolic pathway (Kaushik and Baruah 2007, Lou et al., 
2008; Ma et al., 2010). Wang et al., (1997) reported that 
rice plants affect the soil Eh value due to variation in root 
respiration and exudation amongst different cultivars 
which eventually influence methane production (Aulakh 
et al., 2001; Han et al., 2013). Gas conductance through 
aerenchyma and release of  oxygen to the rhizosphere and 
methane to atmosphere, varies among rice cultivars and 
results in dissimilarity in emission potential (Aulakh et al., 
2000; Mei et al., 2009; Li et al., 2013). Mitra et al., (1999), 
studied methane emission potential of  six popular rice 
varieties under flooded conditions and results indicated 
that considerable variation exist between the varieties. 
The average methane emissions varied from 0.65 to 
1.12 mgm-2h-1 and the maximum seasonal emission was 
observed in a variety Pusa 933 and minimum emission 
was observed in Pusa 169 ranging from 27.2 kg ha-1 to 
15.6 kg ha-1 respectively. Shin and Yun (2000), studied 
methane emission amongst eight Korean cultivars under 
uniform field conditions and reported significant variation 
in the CH4 flux rate between 36.7 (Dasanbyeo) to 76.0 g 
CH4 m

-2 (Mangeumbyeo).

Watanabe et al., 1995, compared the effect of  rice 
cultivar on methane emission potential using hybrids, 
indica and japonica types. Although the hybrids produced 
more biomass than indica and japonica types, the methane 
emission rates were analogous. However, Ma et al., 2010, 
reported as hybrid rice produced 50–60% more shoot 
biomass compared to cultivars and the emission rates were 
comparable to japonica and lesser than indica. The hybrid 
rice cultivars were showed variation in methane transport 
based on the difference in growth parameters and the 
anatomical characteristics like aerenchyma development. It 
was also observed that hybrid rice had a positive influence 
on the methanotrophic population around rhizosphere, 
which helps in reducing methane emission by enhancing 
oxidation of  methane.

Effect of crop growth stages on CH4 emission
The pathway for methane emission is routed from 
the soil to the atmosphere primarily through plant 
transportation system. During the crop duration, 90% of  
total methane emission is conducted through the plant 
and the conductance through water column is negligible. 
Gogoi et al., 2008, studied methane emission in different 
ecosystems using diverse rice cultivars. Methane peaks were 
observed at active tillering stage and reproductive stage of  
the crop. Tang et al., 2016, studied gas emissions during 
growth stages and showed highest peak of  emissions at 
booting stage followed by tillering stage. Aerenchyma cells 
in the rhizosphere supports CH4 transport during active 
tillering through diffusion mechanisms (Yu et al., 2016). 
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At active tillering stage, rice plant augments the passage 
of  CH4 produced in the root zone to the atmosphere 
(Gogoi et al., 2003; Bhattacharya et al., 2013; Suryavanshi 
et al., 2013; Miyata et al., 2000; Meijide et al., 2011; Alberto 
et al., 2014). The methane emission at reproductive stage 
entails almost to 90% (Cicerone and Shetter 1981; Schutz 
et al., 1989). During this stage, root exudates increase CH4 
production by supplying carbon resource and mobilizing 
micronutrients and methanogenic microorganisms (Denier 
et al., 1995; Ziska et al., 1998; Lu et al., 2009). Root exudates 
and decaying plant biomass also have potential influence 
on methane emission with enhanced production in the soil 
zones surrounding root system (Sass et al., 1992, Majumdar, 
2003), especially for the CH4 flux changes at panicle 
initiation stage (Bouwman 1991;Wassmann et al., 1993; 
Kruger et al., 2001 and Tokida et al., 2010). After the panicle 
development and grain filling, decline in the emission has 
been detected due to ageing and loss of  permeability of  
root epidermis and conductance in the shoot (Nouchi et al., 
1990; Wang and Patrick, 1995).Together with reduction in 
dissolved organic carbon at the end of  crop growth stage 
methane emissions were observed to be declined drastically 
(Lu et al., 2000; Das et al., 2008).

Genotypic variation for methane emission
As rice plant is the source of  substrate, site of  methanogenesis 
and channel for the transfer of  more than 90% of  methane 
fluxes from irrigated field (Holzapfel-Pschorn et al., 1985; 
Jia and Cai 2003; Hussain et al., 2014), cultivar variation is 
the key factor that influences methane emission (Mosier 
et al., 1990; Fu et al., 2009; Su et al., 2015; Qin et al., 2015). 
The rice cultivars vary for the capacity to transport oxygen 
to the rhizosphere (Kludzeet al., 1993; Adhya et al., 1994; 
Mitra et al. 1999; Aulakh et al., 2000; Kumar and Viyol, 
2009). Bahl et al., (1997) observed a difference of  24-
31% in methane emissions between japonica cultivars for 
two consecutive years. Nugroho et al., (1997), screened 8 
popular varieties in Indonesia and found Atomita-4 with 
lowest quantity of  CH4 released per kg of  grain production. 
This trait is mainly influenced by grain yield of  the cultivar 
and fertilizer applications to the field. Shin and Yun, 2000, 
found a cultivar Dasanbyeo with lowest CH4 flux after 
screening popular Korean rice cultivars. Das and Baruah, 
2008, found the variety Ranjit with higher photosynthate 
partitioning for panicles and has lower CH4 flux compared 
to cultivar Agni, with more partitioning towards vegetative 
growth. Moreover, the extensive root growth intensifies the 
methane transport to the above-ground parts. Similarly, 
Das et al., 2008, reported the cultivar Luit with higher 
photosynthesis rate at reproductive stage showed lower 
CH4 emission compared to cultivar Disang having high 
photosynthetic rate at vegetative stage. Indirect association 
is observed between capacity of  cultivar to fix, translocate, 
partition and store carbon through photosynthesis with 

methane emission (Sass and Cicerone, 2009). Gogoi et al., 
2008 demonstrated difference in CH4 emission in Ranjit 
and Mahsuri cultivars due to their variation in shoot and 
root biomass. It was inferred that variation in emission 
peaks were mainly contributed by difference in number 
and morphology of  leaves, tillers and roots which are, 
again, influenced by genotypic and environmental factors.

Among the varieties, it was found that Koshihikari is a 
potential cultivar for mitigating CH4 emission with stable 
grain yield (Lou et al., 2008). Comparison between two 
varieties Pusa44 and PR118 presented that Pusa44 had better 
vegetative growth with significantly higher CH4 emission 
(Khosa et al., 2010). Some Indian varieties like Gitesh and 
Kushal have been found to emit less methane and nitrous 
oxide (Baruah et al., 2010). Yu et al., 2016, compared super 
rice variety, Ningjing1 and traditional variety Zhendao11 
and reported that total CH4 emission from Ningjing1 was 
35.2% lower and it was mainly contributed by its stronger 
root system compared to Zhendao11. Based on these facts, 
high yielding cultivars with less methane emissions may 
be considered climate resilient for cultivation. However, 
some studies reported that differences in CH4 emissions 
from cultivar are not consistent over time but exhibited 
high phenotypic flexibility due to environment interactions 
(Wassmann et al., 2002; Lu et al., 2000; Sun et al., 2016).

Further studies using high throughput phenotyping of  rice 
varieties for morphological as well as physiological traits 
contributing to methane emission, would immensely favour 
breeding targets in this direction. Screening genotypes, for 
gaseous exchange in controlled environment or rhizotrons 
and multi environment testing, would provide information 
on genotypes having potential for low methane emission, 
and also the differences in methane emission in different 
crop growth stages. The phenotyping platforms designs 
can be programmed to measure traits like gas transport 
potential, metabolic activity and root exudates. Moreover, 
Gutierrez et al., (2013) demonstrated that the digital 
imaging is more efficient than traditional method in 
measuring the root oxidation potential.

Association of plant traits to CH4 emission
Simultaneous accomplishment of  methane reduction 
as well as sustainable rice production must be the focus 
of  any mitigation technology adaptation. The global 
warming potential can, thus be brought in win-win 
situation by concentrated efforts on varietal selection and 
management practices in rice (Minamikawa et al., 2012). 
Several studies reported that significant correlations were 
observed between the morphological and anatomical 
adaptations of  genotypes to emissions inspite of  the 
system of  cultivation (Table 1). Priority may be given for 
identification of  associated traits and donor genotypes 
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and incorporating them in varietal development. Methane 
production is correlated with photosynthetic activity and 
photosynthetic carbon allocation of  rice plants (Sass 
et al., 1991). Therefore, an inverse relation between grain 
yield and methane release was reported as most of  the 
photosynthetically fixed carbon is stored as grain (Denier 
van der Gon et al., 2002). High yielding cultivars with 
low photosynthetic carbon allocation to root have, also, 
found to decrease methane emissions by providing lower 
substrate for methanogens (Das and Baruah, 2008). Qin 
et al., (2015), conducted a two-year field experiment and 
found tiller number and nitrogen assimilation of  leaves 
as decisive parameters for significant differences in yield 
scaled methane emission rates among rice cultivars. 
Butterbach-Bahl et al., (1997) and Aulakh et al., (2000) 
explained that CH4 transport capacity is a key factor in 
differentiating CH4 emissions between two cultivars. 
Number, morphological differences and developmental 
duration of  aerenchyma has a direct association with gas 

transport capacity (Majumdar, 2003). Variation in root and 
shoot traits, altogether contribute to the average daily CH4 
emission (Lou et al., 2008). More studies have to focus on 
root and shoot anatomy, so that the genes responsible for 
anatomical changes causing variations in emissions can 
be pursued.

In the context of  methane emission, the rhizosphere plays 
a major role as elevated root oxidation potential is essential 
for methane oxidation (Gutierrez et al., 2014). Cultivars 
with high root oxidation potential can be preferably selected 
for low methane emissions. Wide range of  variation in 
cultivars was observed for cumulative CH4 flux and oxidase 
activity at the root tip, indicating an indirect effect of  root 
oxidation potential on CH4 flux (Satpathy et al., 1998). 
Aulakh et al., (2001), demonstrated positive associations 
between rates of  root exudation with CH4 production. 
Kerdchoechuen 2005, compared 4 Thai rice varieties and 
found that methane emission was related to sugars and 
organic acids in root exudates. Microbial activity in the 

Table 1: Associated traits contributing to genotypic variation in terms of methane emission
S. No. Associated traits contribute genotypic variation in terms of methane 

emission 
References

1. Plant biomass, profuse vegetative growth Parashar et al., 1997
2. Plant architecture, metabolic activity and gas transport potential Sigren et al. 1997;

Huang et al., 1998
3. Gas transport capacity Butterbach-Bahl et al., 1997

Aulakh et al., 2000
Majumdar, 2003

4. Plant growth, root length, root volume, root porosity, number of tillers, root mass 
rooting pattern, metabolic activity

Kim et al., 1999

5. Nodal development Aulakh, 2000
6. Gas conductance through aerenchyma Aulakh et al., 2000;

Mei et al., 2009;
Li et al., 2013

7. Photosynthate partitioning Das and Baruah, 2008;
Das et al., 2008;
Sass and Cicerone, 2009

8. Root length, root weight, above ground biomass, number of tillers Setyanto et al., 2004
9. Sugars and organic acids of roots and root exudates and biomass yield Kerdchoechuen, 2005
10. Leaf number, tiller number, profuse vegetative growth, leaf area index Gogoi et al., 2008
11. Number of tillers per area, the root mass, the rooting pattern, and metabolic 

activity
Udayasoorian and Sebastian, 2008

12. Root weight, shoot dry weight, number of tillers, leaf area, aerenchyma El-Sharkawy et al., 2009
13. Anatomical features of medullary cavity Nouchi et al., 1990;

Wang et al., 1997;
Das and Baruah, 2008

14. Leaf area, leaf number, tiller number and root dry weight, crop photosynthetic rate Baruah et al., 2010
15. Leaf number, tiller number, plant biomass Uprety et al., 2011
16. Plant biomass at heading Simmonds et al., 2014
17. Tiller number, culm biomass, harvest index , root mass, panicle biomass, 

oxidation potential of rhizosphere, methane transport capacity of rice roots, culm 
influence emissions

Qin et al., 2015

18. Leaf area index, tiller number, leaf and root dry weight, rate of leaf transpiration, 
stomatal conductance, leaf stomatal frequency, size of the xylem vessels

Borah and Baruah, 2015 

19. Spikelet number Jiang et al., 2016
20. Root traits Zhang et al., 2016
21. Biomass, root porosity Jiang et al., 2017
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paddy field was enhanced due to organic carbon provided 
from root exudates and root litter. Das and Baruah 2008 
suggested that cultivars with intensified reallocation 
of  photosynthates to roots provide more substrate to 
methanogenic bacteria in the root zone.

Methanogenic and methanotrophic microorganisms also 
play a key role in the CH4 emissions (Semrau et al., 2010; 
Bridgham et al., 2013; Costa and Leigh, 2014; Lee et al., 
2015; Han et al., 2016). Win et al., 2011 and Fazli et al., 
2013 reported the specificity of  rice cultivar on rate of  
methane oxidation activity and methanotrophic bacteria 
populations in rhizosphere. Xuan et al., 2011, detected effect 
of  plant type on community structure of  methanotrophs. 
Soil microbial community is also affected by differences 
in the root exudates, root porosity and oxygenation 
at rhizosphere which are cultivar depend (Landi et al., 
2006; Doornbos et al., 2012). On the contrary, Wu etal. 
2009 suggested no significant effect of  genotypes on the 
methanotrophic community. Schutz et al., (1989) reported 
that, although there is change in methane emissions during 
growth stages, the concentration of  methanogens remained 
stable.

Breeding rice varieties for reduced methane emission
Climate-adaptive breeding and replacement of  obsolete 
cultivars with climate resilient varieties are key mechanisms 
to mitigate the impact of  climate change (Altin et al., 2017). 
Identifying genotypic variation through field screening 
for CH4 emissions, high temperature, ozone tolerance 
and nitrogen use efficiency, is required for initiating a 
successful breeding programme to develop rice cultivars 
capable of  higher yields for climate resilience (Serrano-
Silva et al., 2014). The variation available for the CH4 
emission contributing traits among germplasm, opens the 
opportunity for breeding low methane emitting cultivars. 
High root oxidizing potential and high harvest index, with 
less number of  unproductive tillers, are the breeding targets 
to develop an ideal rice cultivar with low CH4 emission 
(Wang et al., 1999). Varieties with reduced respiration 
losses will provide twin benefits of  food security and 
GHG mitigations (Chauhan and Mahajan, 2013). Jiang 
et al., (2017) reported that breeding high-yielding rice 
cultivars with higher biomass and increased root porosity 
is a key strategy to reduce emissions while sustaining rice 
production by screening 33 rice cultivars. Development 
of  new cultivars with minimum number of  unproductive 
tillers and reduced root permeability can decrease methane 
emission and it will be promising and are economical way to 
mitigate methane emissions. A schematic outline of  feasible 
crop improvement steps, to develop improved genotypes 
with lower methane emission, is given in the Fig. 1.

Breeding can be targeted to achieve reduced CH4 emissions 

by designing genotypes with increased rhizosphere and 
reduced carbon release from root zone. The physiological 
parameters affecting the methane emissions should be 
considered for screening while developing varieties. 
Moreover, the new plant type (NPT) rice cultivars bred 
for effective number of  tillers with few aerenchyma are 
considered effective for reduced root exudates. It has been 
shown that the cultivars showing ozone resistance, nitrogen 
use efficiency and water use efficiency emit less methane. 
So, the genotypes which have been phenotyped for these 
related parameters can be used as donors in breeding 
programmes (Avnery et al., 2013).

In addition, mitigation of  methane emissions could 
be achieved through improved land use applications, 
better management practices of  rice fields, reduced 
land disturbances, direct sowing and water management 
practices. Submergence of  rice fields can be prevented 
and shifted to alternative systems of  cultivation. So, 
breeding for these management practices also leads to 
developing suitable cultivars. The aerobic rice emits 80-85 
% lesser methane gas into the atmosphere coupled with 
higher carbon credits (Parthasarathi et al., 2012; Sandhu 
et al., 2013, Sritharan et al., 2015). IPCC, 2006 - National 
Greenhouse Gas Inventories guidelines, assessed an average 
of  48% reduction in methane emission vis-a-vis normal 
puddled transplanted field. The aerobic, dry direct seeded 
rice and alternate wetting and drying (AWD) systems 
of  cultivation are, thus, gaining importance in today’s 
scenario of  climate change (Tiago et al., 2016; Sharma 
et al., 2016; Xu et al., 2015). AWD system along with water 
conservation, was reported to reduce methane emission 
in rice by 43% compared to flooded irrigated rice systems 
(Sanders et al., 2015). On the other hand such adaption 
to aerobic, rainfed and AWD systems needs genotypes 
suitable and highly productive in such systems. Breeding 
of  tolerant varieties for water limited conditions will also 
help in growing rice in unflooded condition, contributing 
to mitigate the methane emissions.

Studies showed that drought tolerant lines with minimal 
yield loss under varying water regimes, are more climate 
resilient in terms of  low methane emission and lower water 
requirement (Zhou and Song, 2014). Shin and Yun, (2000), 
screened cultivars of  different duration and reported 
that irrespective of  growth duration, similar trends were 
observed in mean daily CH4 emission as well as integrated 
seasonal CH4 flux. However early maturing cultivar emits 
less cumulative CH4 in comparison to late maturing cultivars 
(Setyanto et al., 2000). Developing short-duration varieties 
with high water use efficiency and per day productivity, 
also will contribute for reduced methane emission (Sass 
et.al. 1993; Wang et.al. 1990; Zhang et.al. 2009; Yadav, 
2013). Proper and systematic cropping practices, along 
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with nutrient management especially nitrogen, water and 
soil management, have also been proved to reduce methane 
emissions (Xiaohong et al., 2011).

Breeding for climate resilience coupled with low input 
technologies is the need of  the hour for feeding the 
proliferating world population (Flavell, 2017). Identification 
of  quantitative trait loci (QTL) and candidate genes, related 
to methane emission and the plant traits which contribute 
for mitigation, may be explored if  large scale phenotyping 
facilities are available. Association mapping is also an 
approach for identifying genomic segments underlying the 
particular region associated with low methane emissions 
or the related traits in the available germplasm resources. 
Even the genomic information is sparse on regions 
associated with low methane emissions, genetic differences 
and allelic differences can be explored between high and 
low methane emission rice lines. In addition, molecular 
tools and new breeding techniques like genome editing 
will greatly enhance the breeding process and to be 
integrated for the successful varietal development (Lusser 
et al., 2011; Flavell, 2017). Genetic engineering is another 
alternative strategy if  there is commercialization and public 
acceptance to genetically modified crops. Su et al., (2015), 
engineered rice for less methane emission by expressing 
the barley transcription factor SUBIBA2 (HvSUSIBA2) 
in rice cultivar, Nipponbare. Three years of  trials in China 
showed reduction in methane emissions from the fields and 
reduced rhizospheric methanogen levels. Such methods can 

be further elevated to a large scale and commercialized.

Endophytic microorganisms viz. methanotrophs have 
been found promising in mitigating methane production 
in crops other than rice (Stepniewska and Kuzniar, 2013). 
Under aerobic soils, the methanotrophs can metabolize 
methane through biological oxidation to the tune of  
90% (Chowdhury and Dick, 2013). In case of  inundated 
paddy fields, methane-oxidizing bacteria are present in 
the water-soil interface (Cicerone and Oremland1988). 
Oxidation of  methane has been reported to limit diffusion 
of  methane up to 60% to the atmosphere (Sass et al., 
1991). The supply of  atmospheric oxygen to the roots 
by rice plants through aerenchyma along with methane-
oxidizing bacteria, results in reduced methane emission 
(Nouchi et al., 1991; Serrano-Silva et al., 2014). Such rice 
associated methanotrophs can be utilized for methane 
mitigation in rice. Genomics technologies revealed role 
of  different microbes in determining crop traits that can 
be further improved for target traits (Flavell, 2017; Alpana 
et al., 2017). Metagenomics, tools can be employed very 
well for studying the diversity of  methanotrophs in the rice 
rhizosphere and will have direct impact of  genotypic traits 
in their population, structure and their oxidation capacity. 
Zhang et al., (2016) reported that diurnal variations of  
CH4 emissions are influenced by Arbuscular Mycorrhizal 
Fungi (AMF).

The digital image based on geospatial analysis platforms are, 

Fig 1. A schematic outline of crop improvement steps for development identification of lines with lower methane emission
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now, readily available and can be deployed for estimation of  
methane emission in specific areas. Based on the simulation 
studies it was observed that early duration rice cultivars 
with short growing seasons emit less methane (Serrano-
Silva et al., 2014). Hasan et al., (2013), reported that short 
duration varieties are the best mitigation strategy based 
on multi criteria evaluation with weighted summation 
method. Moreover, crop simulation modelling along with 
meta analysis can also aid in designing models for reduced 
methane emissions from rice fields (Matthews et al., 2000; 
Ananda et al., 2004; Babu et al., 2005; Zhang et al., 2011) 
and action-oriented research towards crop-climate models 
are essential (Campbell et al. 2016) and the information 
obtained can be integrated in crop improvement.

Improved varieties from plant breeding and their adaptation 
in agriculture, sustained the global food security since green 
revolution. There is a need to identify the plant contributing 
traits which affect the methane emission through large 
scale genetic studies and multi environment testing. It will 
facilitate the identification and breeding of  suitable cultivars 
for eco-friendly, low methane emitting high yielding rice 
varieties with more accuracy. Appropriate choice of  rice 
cultivars with associated traits for low methane emission 
and utilization in crop improvement is very essential.

CONCLUSION

Methane emission is anticipated to upsurge while meeting 
the challenges of  global food security with existing 
cultivars and traditional agronomical practices for rice 
production. Morphological, anatomical, microbiological 
and physiological parameters of  rice need to be studied in 
detail to understand the mechanisms involved in methane 
emission. The combined strategy can be well employed 
in breeding programmes reflecting, all together, a new 
avenue for climate smart rice. More studies are needed to 
understand the inheritance of  underlying traits and their 
yield potential. Cultivation of  high-yielding rice cultivars, 
with a low gas transport capacity, represents an economic 
and promising approach to reduce methane emissions. 
Utilization of  feasible mitigation technologies and suitable 
cultivars helps in sustainable yield improvement without 
radical changes in cultural practices and food habits.
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