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INTRODUCTION

Chlorophyll-a (Chl-a) concentration can be considered as 
a direct indicator to assess the biophysical characteristics 
of  a water body. Chl-a has been useful for measuring the 
variety and abundance of  phytoplankton and/or the algal 
biomass (Boyer et al. 2009). Hence, geospatial technology 
is one of  the suitable methods for the representation of  
the Chl-a variability in the area (Matthews et al. 2001). 
The concentration of  Chl-a has also been used as a key 
parameter to represent water quality conditions (Le et al. 
2013 and Cheng et al. 2013). The spatiotemporal difference 
of  Chl-a concentration results can be used to perform 
further analysis of  the water quality level and help improve 
water resource management. The concentration of  Chl-a 

varies spatially from place to place in coastal regions. Since 
conventional methods for studying water quality by field 
sampling are expensive, time-consuming, and spatially 
incomplete, remote sensing is a highly applicable alternative 
method for the large, medium, and small scale mapping of  
water quality. Satellite imageries of  various sensors have 
been successfully applied to water quality mapping and 
monitoring in terms of  Chl-a concentration, seas surface 
temperature and dissolved organic matter by using several 
ocean colour algorithms, such as OC3 and FLH (Fengyun 
2010).

The marine ecosystems of  the UAE are fragile and 
susceptible to algal bloom events including the harmful 
algal blooms (HABs), which named red tide (Al Shehhi 
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et al 2014; UAE-MOEW 2015). UNESCO (2015) indicated 
that the algal blooms are known to have several names 
including phytoplankton blooms, micro-algal blooms, 
toxic algal blooms, or red tide (UNESCO 2015).  The 
UNESCO recognized about three hundred species of  
microalgae. One-fourth of  these species produce toxins.  
Such algal bloom events could be captured via remote 
sensing capabilities by measuring the Chl-a presence and 
accumulation over time. All such blooms could be captured 
via remote sensing capabilities through measuring the Chl-a 
presence and accumulation over time. The UNESCO also 
indicated that about three hundred species of  microalgae 
were recognized as they are forming mass occurrence 
known as blooms. About one-fourth of  these species 
produce toxins. The scientific community refers to these 
events HABs, recognizing a wide range of  organisms’ 
accumulation involved and that some species have toxic 
effects at low cell concentrations. 

Since the 1990s, the advancement of  satellite imaging 
technology offers efficient means for understanding the 
spectral signature of  water quality parameters. This can be 
achieved by improvements of  mathematical models have 
led to semi-empirical methods becoming an important 
technique for monitoring water quality remotely (Guo 
et al 2016). These remote sensing studies found that Chl-a 
estimation procedure and variables selection show the 
importance of  considering the optical properties of  the 
water body. For example, in ocean water, phytoplankton is 
generally the principal constituent and the concentrations 
of  other components vary with Chl-a. Thus, the properties 
of  these waters are dominantly phytoplankton and they can 
be observed using spectral features in the reflected light can 
be directly related to Chl-a concentration (Moses et al 2009). 

Satellite ocean colour sensors’ data, remote sensing 
methods, and algorithms are widely used for the detection, 
mapping, and monitoring of  phytoplankton blooms as 
the earth observation provides synoptic recognition of  
the ocean, at both spatially and temporally dimensions 
(Blondeau-Patissier et al 2014). Many satellites have been 
developed for spatial, temporal, and radiometric resolutions 
of  ocean colour and surface water temperatures to obtain 
high accuracy levels (Steissberg et al. 2005). However, most 
of  these satellites offer data with a frequency of  every 
16 days, such as Landsat and ASTER (Advanced Space 
borne Thermal Emission and Reflection Radiometer), for 
a given location. Besides, Landsat does not record data 
at night. For example, the Moderate Resolution Imaging 
Spectroradiometer (MODIS) is advanced technology. As 
well the High-Resolution Radiometer (HRR) component 
overcome these temporal resolution limitations and of  
estimating and ocean colour and surface temperature (Lu 
et al 2011). They provide daily coverage of  the Earth’s 

surface at a resolution of  1 × 1 km with a large scan angle 
(Justice et al 1998). The main limitation of  these sensors 
is their inability to penetrate clouds, which makes them 
available for only clear-sky conditions (Prigent et al 2003). 
In Lake Okeechobee, Florida, Lamon (1995) generated a 
regression model to predict the Chl-a levels in different 
zones of  the lake.Temperature, total nitrogen, total 
phosphorous, wind velocity, and Chl-a data were used 
in this study. Lamon applied exploratory data analysis to 
determine the spatial and temporal scale of  variations 
in Chl-a levels. Ali et al. (2013) studied the variability of  
water quality parameters that can help in understanding 
the pattern of  changes and assessing the sustainability 
of  the creek. DubaiSat-1 imagery and Spectral-based and 
field measured chlorophyll-a concentrations at the five 
stations data along the creek have been used to study the 
variability of  chlorophyll-a as an essential algal growth 
indicator. Based on this study, the implications of  urban 
development in the UAE creek influence the variability of  
the concentrations of  chlorophyll-a, phosphates, and total 
nitrogen. The analysis showed a high correlation between 
the spectral-based chlorophyll-a concentrations on one 
hand and the field-based phosphates and total nitrogen 
concentrations on the other hand.

To assess the likely incidences of  coastal algal blooms using 
field observations Wong et al. (2007) suggested a simple 
and practical algal bloom statistical model using vertical 
stability theory and framework for shallow coastal waters.
The model included three-dimensional hydrodynamic 
circulation modules. The simulated processes included algal 
growth, decay, settling, and vertical turbulent mixing. This 
study assessed the possibility of  algal bloom occurrence 
and evaluated the results based on field observations over 
four years. The model’s outcome supports the explanation 
of  the observed spatial and temporal patterns of  bloom 
occurrences concerning the water nutrient condition and 
vertical turbulence and waterbody nutrient conditions.

Malek et al. (2011) applied statistical models to evaluate 
the Chl-a concentrations in tropical Putrajaya Lake, 
Malaysia. The study aimed to evaluate the performance 
of  four different models, namely Recurrent Artificial 
Neural Network, Fuzzy Logic, Hybrid Evolutionary 
Algorithm (HEA) and Multiple Linear Regressions  to 
predict the concentration of  Chl-a. The authors used the 
root mean square Error (RMSE), correlation coefficient 
of  determination (R2), and area under the receiving 
operating characteristic (ROC) curve to assess the fitness 
of  these models. The authors suggested such evaluations 
are important towards developing a trustworthy algorithm 
to estimate Chl-a concentration for eutrophication 
management of  tropical lakes. They concluded that HEA 
produced the best performance compared to the other 
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models. The authors suggested such evaluations are 
important towards developing a trustworthy algorithm 
to estimate Chl-a concentration for eutrophication 
management of  tropical lakes. Malek et al. (2011) concluded 
that HEA produced the best performance for their case 
study. 

Kiefer et al. (2015) used Chl-a concentration as a 
signal of  phytoplankton abundance and trophic level 
at Lake Geneva, Switzerland. The authors used 11,234 
satellite images from the Medium Resolution Imaging 
Spectrometer (MERIS) sensor on the Envisat satellite 
from 2002 to 2012-time period to quantify the spatial 
and time-based variations of  Chl-a concentration. The 
methods used to perform the analysis included calibration 
of  remotely sensed data and reference datasets using linear 
regression, Chl-a evolution, and spatiotemporal variability 
using means and standard deviation of  the lognormal 
distribution, and spatial representativeness of  two selected 
locations. The analysis of  time-based evolution showed an 
overall decline of  Chl-a concentrations in Lake Geneva but 
also strong spatial variability between different segments 
of  the lake. 

Rousseaux and Watson (2017) applied a biochemical 
model to forecast ocean Chl-a. The model was able to 
reproduce the dominant features of  variation of  the Chl-a 
concentration in the study area. The results indicated the 
potential for forecasting Chl-a concentration in this region 
but also highlighted various deficiencies and propulsions 
for enhancements to the current biogeochemical 
forecasting system. The authors suggested the potential 
outcome of  their analysis to offer a fundamental basis 
for future applications, including the effects of  El 
Niño events on fisheries. A semi-analytical approach of  
deriving Chl-a concentration was applied to the light 
absorption coefficient of  phytoplankton. Zheng and 
DiGiacomo (2017) introduced a model named generalized 
stacked-constraints model (GSCM) to partition satellite-
derived total light absorption coefficient of  water into 
phytoplankton and non-phytoplankton components. The 
study shows that semi-analytical methods can provide a 
sufficient Chl-a product compared to reflectance-band-
ratio algorithms. The GSCM to satellite ocean-colour data 
analysis revealed the issue of  infeasible solutions when 
input data are subject to significant errors.

To discuss and analyse the spatial and temporal 
distribution of  chlorophyll-a and its correlation with 
salinity and total suspended solids (TSS) in the seawaters 
at the Cirebon in West Java, Indonesia, Buditama et al. 
(2017) developed an appropriate model. The objective 
of  this research was to offer a source of  information 
for fishermen, and other relevant stakeholders to predict 

fertile water regions which can be used as an indicator 
in discovering potential areas to catch pelagic fish in 
the study area seawaters. Chlorophyll-a concentration, 
salinity, and TSS were identified in this study, using 
remote sensing data obtained from Landsat-8 Operational 
Land Imager (OLI) multi-temporal images according to 
dry and wet month parameters in the years 2014-2015. 
The results of  the research showed that chlorophyll-a 
levels tended to be higher in wet months relative to dry 
months. The research found that the distribution of  
chlorophyll-a concentration is affected negatively by the 
accumulation of  salinity but positively by increasing the 
total suspended solids.

Recently, Arabi et al. (2018) used remote sensing of  
water constituent concentrations of  time-series data at 
the Wadden Dutch Sea during the years 2008-2010. The 
capability of  the 2SeaColor model to retrieve accurate 
estimates, and the favourable location of  the study area, 
which is mildly influenced by tidal phase variations, 
contributed to a further understanding of  the long-term 
variability of  Chl-a concentrations. The results of  this study 
support the ongoing efforts on the Sentinel-3 Ocean and 
Land Colour Instrument (OLCI) calibration and validation 
at the study area (Arabi et al. 2018). In other previous 
studies, Feng et al. (2015) found the chlorophyll generally 
declined with increasing temperature and light. Meanwhile, 
Shen et al. (2018) found that the spatial distribution of  
high Cha concertation is negatively correlated with low 
Sea-Surface-Temperature (SST) in the studies area in China. 
Poll et al. (2013) assessed the relationship between SST 
and vertical density stratification, nutrient concentration 
and phytoplankton biomass, and composition. The 
authors suggested stratification temperature does not 
necessarily result in phytoplankton biomass standing 
in the region studied. Elawad (2010) studied the inter-
annual Chlorophyll variations in the Red Sea and noticed 
that physical parameters were found to have control of  
phytoplankton blooms. For example, the author considered 
the positive effects of  wind speed and solar radiation on 
Chl-a concentration. 

All previous studies recommend inclusion of  biophysical, 
weather, and seasonality when studying the factors that 
influence Chl-a presence and accumulation over time. 
These studies also agreed that advances in remote sensing 
offer a sufficient set of  explanatory variables to build 
statistical models to study algal blooms phenomena. In 
this study, we modify regression models used in previous 
scholarly work and argue that climatic and biophysical 
explanatory variables derived from  remote sensing data 
are sufficient for developing such models. We  also test 
the sensitivity and the fitness of  the developed statistical 
functional forms.
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RESEARCH OBJECTIVES

The present research explores statistical analysis between Chl-a 
presence and accumulation that can be captured through 
remote sensing data for the study area (UAE Coastal region 
that covers in the Arabian Gulf  and the Gulf  of  Oman). 
Such presence of  Chl-a was regressed against the explanatory 
variable to explore the importance of  such variables and find 
the optimum best fit statistical model that represents the 
Cha-a obtained data. This research tests the hypothesis that 
advances in remote sensing offer sufficient information to 
statistically fit the model that represent such a relationship 
between Chl-a concentration and the explanatory variables. 
All relevant biological, physical, and environmental influential 
factors across the selected period from January 2008 to 
December 2011 are captured, summarised, and used to study 
the regression relationships. The study period was selected due 
to several observed events of  algal blooms outbreaks in the 
study area (e.g. Richlen et al 2010; Zhao et al 2014). 

The specific objective of  the study is to identify the best-
fit statistical functional form model that represents the 
correlation between Chl-a concentration that was retrieved 
using remotely sensed data as a dependent variable, and 
the selected explanatory variables. Explanatory variables 
are Particulate organic carbon, Sea Surface Temperature, 
Calcite Concertation, Instantaneous Photo-synthetically 
Available Radiation, Normalized Fluorescence Line Height, 
and Wind Speed). The results of  the study are evaluated 
with data from the year 2013 not used for calibration. 
Furthermore, the study estimates the best statistical model 
parameters, summarises the results, and discusses the 
interpretations and implications of  such results. All of  this 
information can be useful for the development of  a model 
of  Chl-a presence and accumulation.

STUDY AREA

The study area (Fig. 1) covers parts of  the two gulfs, the 
Arabian Gulf  and the Gulf  of  Oman. The Arabian Gulf  is 
located between latitude 24.0º N and 30.0º N and longitude 
48.00E and 57.00 E. Meanwhile, the Gulf  of  Oman situated 
between 22.00 N to 26.00 N and 56.00 E to 60.00 E. The 
total length of  the coastline of  the UAE is 1318 km, which 
consist 650 km at the Arabian Gulf  and remaining 668 km 
at the Gulf  of  Oman. 

DATA AND METHODS

The MODIS-Aqua Level 2 data of  the Arabian Gulf  and 
the Gulf  of  Oman, obtained from the National Aeronautics 
and Space Administration (NASA) Goddard Space Flight 
Centre (NASA′s Ocean colour website: https://oceancolor.

gsfc.nasa.gov/), were used in this study. The data covered 
the period 2008 to 2011 in which algal bloom events have 
occurred. The dependent variable Chl-a concentration and 
independent variables Calcite Concertation, normalized 
fluorescence line-height, particulate organic carbon, 
instantaneous photosynthetically available radiation, and 
sea surface temperature were derived from the dataset. 
Definitions of  the variables are presented in Table 1. The 
data were analysed using SeaDas, ENVI, and ArcMap 
software. The median values of  the variables mentioned 
above were used to carry out the regression analysis. 
The median was chosen because it is not biased, and it 
eliminates the impact of  outliers compared to the mean. 
Chl-a concentration was estimated using the Ocean Colour 
Index (OCI) algorithm (Hu et al. 2012). The daily data of  
wind speed were downloaded from the National Oceanic 
and Atmospheric Administration (NOAA) - National 
Centres for Environmental Information (https://www.
ncdc.noaa.gov/cdo-web/). 

The spatial resolution of  the processed MODIS data 
is 1 km2, and wind speed data is 0.25X0.25 degrees. 
The total number of  days of  data for the years 2008, 
2009, 2010, and 2011 was 490, 120, 100, 143, and 127, 
respectively for the period covered. The data for the 
year 2013 (132 days) were used for model evaluation. 
The number of  days varied from year to year due to 
the absence of  algal blooms in the study area during 
certain days. For example, the year 2009 witnessed the 
least number of  algal bloom days. Selected dependent 
variable (Chl-a concentration) and independent 
variables calcite concertation, normalized fluorescence 
line-height, particulate organic carbon, instantaneous 
photosynthetically available radiation, and sea surface 
temperature maps are illustrated in the results and 
discussion section of  the paper. The mathematical 
algorithms used in this research to generate the variables 
are described in Appendix A. Descriptive statistics of  the 
variables used for the base model (for the period 2008-
2011 development and the model evaluation during the 
year 2013) are shown in Table 2 and Table 3, respectively. 

Statistical models 
Three statistical functional forms are used in this study a 
Linear Model, Semi-Log Model, and a Generalized Least 
Square Model (GLS). The purpose of  such statistical 
analysis is to select the most appropriate statistical 
functional form that represents the “Best” fitness model 
to generalize on the results and offer interpretations of  
the relationship between the dependent variable Chl-a as 
an index for algal and set of  explanatory/independent 
variables (i.e. the percentage change in the independent 
variables) as follow:
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Table 1: Regression dependent and explanatory variables definitions
Variable Definition Measuring Unit
Chlorophyll-a  Concentration The amount of photosynthetic plankton present in the ocean and a water quality 

parameter providing food to aquatic life. (Nazeer and Nichol, 2015).
mg m-3

Calcite concentration Insoluble mineral in ocean surface waters, including dead calcareous plankton 
shells.

mol m-3

Particulate organic carbon A large component of organic matter in the carbon cycle, which serves as a 
primary food source for aquatic foods.

mg m-3

Instantaneous photosynthetically  
available radiation

Total PAR (Photosynthetically Available Radiation) incident on the ocean surface 
at the time of the satellite observation (https://oceancolor.gsfc.nasa.gov/).

Einstein m2 s-1

Normalized fluorescence line height Wavelength signal that describes the spectral distribution above the surface 
of the water body, measured by the difference between the observed NLW 
(678 nm) and a linearly interpolated NLW (678 nm) from two surrounding bands 
(https://oceancolor.gsfc.nasa.gov/). NLW stands for normalized water-leaving 
radiance.

Wm-2 µm-1 sr-1

Sea surface temperature A measure of the energy due to the motion of molecules at the top layer of the 
ocean (https://podaac.jpl.nasa.gov/)

degree

Sea surface wind speed Movement of the atmosphere relative to the surface of the sea (https://www.
ncdc.noaa.gov/dataaccessmarine-ocean-data/blended-global/blended-sea-
winds).

m s-1

Table 2: Dependent and explanatory variables descriptive statistics
Variables Units Minimum Maximum Mean Standard Deviation CV*
Chlorophyll-a mg m -3 0.096 2.9 0.8 0.5 61%
Sea surface temperature °C 2.5 32.8 25.1 3.8 15%
Calcite concentration mol m -3 0.001 0.7 0.001 0.029 1970%
Particulate organic carbon mg m -3 0.001 431.9 168.0 76.4 45%
Instantaneous photosynthetically  available radiation Einstein m-2 s-1 0.001 0.2 0.0 0.009 414%
Normalized fluorescence line height W m-2 mm-1 sr-1 0.001 0.3 0.1 0.1 42%
Seasonal value - 0 1 0.9 0.2 24%
Wind speed m s-1 0.683 11.3 4.7 2.1 45%
*CV = Coefficient of Variation
Number of Observations: 490 for the whole period covered between 2008 and 2012

Fig 1. Research Study Area.
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Linear functional form:

Yi  = α + β1 X1 + β2 X2+ β3 X3+ β4 X4+ β5 X5+ β6 X6+ β7 
X7+ µi� (1)

Semi-Log functional form:

Log Yi = α + β1 X1 + β2 X2+ β3 X3+ β4 X4+ β5 X5+ β6 X6+ 
β7 X7+ µi� (2)

Generalized Least Square (GLS) functional form 

GLS assumes the heteroscedastic variance σi
2 are known 

to obtain the functional form, divided by σi :

b b b b
s s s s s

b b b b b
s s s s s

æ ö æ ö æ ö æ ö
= + + + +ç ÷ ç ÷ ç ÷ ç ÷

è ø è ø è ø è ø
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i i

i i i i i

i i i i i

Y X X X X

X X X X X

 (3)

Where
Yi = Chl-a concentration in mg m-3

a = constant
X1 = Sea Surface Temperature in ºC
X2 = Calcite Concentration in mol m-3 = 1.0 × 10-6 kg / m-3

X3 = Particulate Organic Carbon in mg m-3 = 1 mol / m3

X4 = Instantaneous Photosynthetically Available Radiation 
in Einstein m-2 s -1 = 1 m-2 s-1 
Einstein is a unit defined as the energy in one mole 
(6.022×1023) of  photons
X5 = Normalized Fluorescence Line Height in W m -2 um -1 sr -1
X6 = Seasonal Value, equals 1 during high fishing and other 
economic activities months in the winter from first of  
January to end of  April each year and 0, otherwise
X7 = Wind Speed in W m -2 um -1 sr -1 m2/sr = Watt per 
square meter per steradian

µi = regression error term not captured by the explanatory 
variables 

RESULTS AND DISCUSSION

Table 2 shows the dependent variable Chl-a concentration 
and each of  the explanatory variables with descriptive 
statistics to explore the distributions of  the variables. 
Considering the ratio of  the standard deviation to the 
mean value (coefficient of  variation), the descriptive 
statistics do not infer the potential of  outliers except for 
Organic Carbon, which is expected in the study area due 
to the oil export activities. The descriptive statistics for 
the validation year 2013 also show the distribution of  
dependent variables that are normally distributed with 
no outliers. This is shown because the coefficient of  
variation values are less than 100 % for all the variables 
in Tables 2 and 3.

As shown in Fig.  2, spatial patterns of  the Chl-a 
concentration sensed in December over four years (2008-
2011) vary substantially from year to year. No consistent 
pattern of  the Chl-a concentration can be detected from 
Fig. 2. This indicates the need to use the statistical model 
and analysis to investigate the factors that influence the 
changes in the Chl-a concentration over time.

This study aims to compare the statistical outcome for 
three functional forms used to identify the best-fit model 
that represents the regression between the dependent 
variable (Chl-a concentration) and the explanatory variables 
listed in equations 1, 2, and 3 above. Table 4 below shows 
the results for three selected function forms/models for 
Chl-a in mg m-3 as the dependent variable against the 
explanatory variables (i.e. particulate organic carbon, sea 
surface temperature, calcite concertation, instantaneous 
photosynthetically available radiation, normalized 
fluorescence line-height, and wind speed). 

Overall, the three functional forms were found to represent 
the data with R2 above 0.6. However, the best-fit model 
was found to be the semi-log model with an R2 value of  0.84 
and an F-distribution of  357. These values were the highest 
compared to the other two models, the Linear and the 
Generalized Least Square (GLS) model results. 

Table 3: Descriptive Statistics of the variables used for the Validation Year 2013
Variables Units Minimum Maximum Mean Standard Deviation CV*
Chlorophyll-a mg m -3 0.082 1.8 0.7 0.4 53%
Sea Surface Temperature °C 10.2 31.2 25.3 3.5 14%
Calcite Concentration mol m -3 0.001 0.003 0.001 0.001 177%
Particulate Organic Carbon mg m -3 0.001 371.2 160.0 72.1 45%
Instantaneous Photosynthetically  Available Radiation einstein m-2 s-1 0.001 0.2 0.004 0.022 525%
Normalized Fluorescence Line Height W m-2 mm-1 sr-1 0.002 0.3 0.1 0.1 43%
Seasonal Value - 0 1 0.9 0.3 35%
Wind Speed m s-1 0.805 11.5 4.5 2.3 51%
*CV = Coefficient of Variation Number of Observations: 132
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Table 4. Statistical results for the three functional forms models
Goodness-of-Fit Metrics Linear Semi-Log Log-Log Generalised Least Squares (GLS) Validation Model Parameters
R 0.906 0.916 0.939 0.938
R2 0.821 0.838 0.638 0.879
Adjusted R2 0.818 0.836 0.633 0.872
F-Test 315.795 357.274 121.263 128.711
P-Value
Dufigurerbin-watson

0.000**
1.830

0.000**
1.795

0.000**
1.780

0.000**
2.156*

Coefficients Linear Semi-Log Log-Log  Generalised Least Squares (GLS) Validation Models Parameters
Sea surface temperature

Beta 0.057 0.073 0.007 -0.035
T-Test 2.565 3.468 0.226 -0.957
P-Value 0.011* 0.001* 0.821  0.341

Calcite concentration
Beta 0.070 0.075 0.332 -0.164
T-Test 3.563 4.040 11.055 -4.261
P-Value 0.0001** 0.0001** 0.0001**        0.0001**

Particulate organic carbon
Beta 0.809 0.761 0.429   0.868
T-Test 35.231 34.842 14.609 19.669
P-Value 0.0001** 0.0001** 0.0001**         0.0001**

Instantaneous photosynthetically available radiation
Beta -0.072 -0.076 -0.067 0.077
T-Test -2.905 -3.242 -1.988 2.230
P-Value 0.004 0.001* 0.047 0.028*

Normalized fluorescence line height
Beta 0.175 0.243 0.346 0.223
T-Test 6.819 9.963 10.607 5.352
P-Value 0.0001** 0.0001** 0.0001**       0.0001**

Seasonal value
Beta -0.006 0.065 0.128 0.048
T-Test -0.280 3.288 4.358 1.386
P-Value 0.780 0.001* 0.0001** 0.168

Wind speed
Beta -0.043 -0.054 -0.105 -0.016
T-Test -2.154 -2.859 -3.750 -0.491
P-Value 0.032 0.004* 0.0001** 0.624

Fig 2. Dependent Variable Chlorophyll-a Concentration Spatial Distribution in mg m-3.
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The parameters coefficients of  the best-fit model can 
be interpreted statically. The dependent variable value 
will increase by 1% as sea surface temperature decreases 
by 0.035 % Calcite Concentration decreases by 0.164%, 
Particulate Carbon increases by 0.868%, Instantaneous 
Photo-synthetically Available Radiation increases by 0.077% 
and Normalized Fluorescence Line Height increases by 
0.223%. Furthermore, the best-fit model’s results showed 
that all explanatory variables are significant at either 99% or 
95% level of  confidence. The P-values of  the explanatory 
variables in this model are less than 0.001 for sea surface 
temperature, less than 0.0001 for calcite concertation, less 
than 0.0001 for particulate organic carbon, less than 0.01 
for instantaneous photosynthetically available radiation, 
less than 0.0001 for normalized fluorescence line-height, 
less than 0.001 for seasonal value, and less than 0.005 for 
wind speed. In other words, a mix of  climatic and biological 
variables seem to have more influence on the Chl-a 
concentration in the study area. This is mostly because the 
region is witnessing significant carbon and organic matter 
accumulation at the UAE Arabian Gulf  and the Gulf  of  
Oman shores due to increasing economic development 
activities. These results indicate that both environmental 
and biophysical (e.g. organic matter) explanatory variables 
are important in building the best statistical regression 
model. The study included such variables based on an 
agreement with similar studies that included similar cases 
(Wong et al. (2007); Elawad (2010); Zheng and DiGiacomo 
(2017) and Shen et al. (2018)).

The study results are evaluated with data from the year 
of  2013, which shows that all variables other than wind 
speed are significant. The P-values of  validation model 
parameters less than 0.0001 for calcite concentration, 
particulate organic carbon, and normalized fluorescence 
line-height, 0.028 for instantaneous photosynthetically 
available radiation, 0.168 for seasonal value, 0.341 for sea 

surface temperature, is 0.624 for wind speed (Table  4). 
Thus, the study results showed that climatic, biological, 
and fisheries activities are significant factors determining 
the algal concentration, using Chl-a as an indicator for 
such analysis. 

This study has used the advances in remotely sensed data 
to study the statistical regression correlation between the 
concentration of  Chl-a and factors that influence its presence 
and concentration. Fig. 2 shows the histograms generated 
for the selected regression models. These models include 
a) Linear Model, b) Semi Log Model, c) Generalized Least 
Square Model, and d) Validation Model. The histograms 
show a similarity of  the estimated dependent variable Chl-a 
between the linear model and the generalized least square 
model due to the similarity of  the models’ mathematical 
specifications. However, as expected, the semi-Log model 
outcome showed a unique shape of  the histogram due to 
its mathematical difference – see equations 1 to 3 for the 
mathematical specification of  each model. 

There is an agreement between the three statistical 
models on the direction (signs) and the inference of  a 
causal relationship between the dependent variable on the 
one hand, and the selected explanatory variables on the 
other hand. However, the three models’ results indicated 
significant variation in the magnitude of  the contribution 
of  each of  the explanatory variables on the dependent 
variable Chl-a. In other words, the models’ were sensitive 
to the selection of  the functional form. The best regression 
model results, using the log-linear functional form, for the 
base period 2008-2011 and the validation period of  the year 
2013 are illustrated in Figs. 3 and 4 respectively. The model 
validation, interestingly, shows a similar but higher overall 
regression fitness compared to the Log-Linear model (the 
best-fit model) for the temporal study period 2008-2011. 
However, the validation period model shows differences in 

Fig 3. Time series of log-transformed Chl-a Concentration: best fit  and residuals during the study period 2008-2011.
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the sign of  the explanatory variables sea-surface temperature 
and Calcite Concentration. This indicates short time 
analysis against longer-time series analysis for the Chl-a 
concentration may produce different results for specific 
explanatory variables. In other words, this study found 
results to be sensitive to the study’s temporal time-period 
length and the explanatory variables selected for the analysis. 

The histograms in Fig. 5 illustrate the distributions of  the 
estimated dependent variable at each type of  statistical 
function forms, Linear Model, Semi-Log Model, Generalized 
Least Square Model, and the Validation Model predicted 

results. The results showed the best-fit model taking a normal 
distribution bell-shape curve. The best-fit model, Semi-Log 
model, is then used to derive results for the validation period 
in the year 2013. The results of  the validation model show 
the overall statistical fitness of  the functional form selected 
in this study, which is the Semi-Log model. 

CONCLUSIONS

Fishing and water desalination activities have been affected 
negatively in the UAE by high concentrations of  algal. This 

Fig 4. Time series of log-transformed Chl-a Concentration: best fit and residuals.

BA

Fig 5. Histograms generated for the Models. A) Linear Model, B) Semi Log Model, C) Generalized Least Square Model, D) Validation Model.
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study quantified the concentrations of  Chl-a in space and 
time using remote sensing data sources in the study area 
(Arabian Gulf  and Gulf  of  Oman) and relevant biological, 
physical, and environmental influential factors. Due to 
the circulation of  two connected water bodies, the two 
gulfs were considered a whole study area for this research. 
The changes across time and space of  the dependent 
variable Chl-a as well as all the selected study explanatory 
variables were complex, not following simple patterns 
of  autocorrelation or cross-correlation with a dominant 
single explanatory variable overall time. Such finding 
indicates the need to use multivariate statistical regression 
models to derive strong correlations between the study’s 
dependent variable and the explanatory variables. The 
results of  this study have the potential to form the base for 
developing a comprehensive monitoring program of  Chl-a, 
which in turn assists the decision-makers in developing 
proper mitigation action plans to control chlorophyll 
concentration. This study offers statistical function forms 
for algal concertation and the possible explanatory variables 
that show the significance that can further be used for 
forecasting and perdition models. 

Over the short-term, the information from this research 
would be useful to support the relevant community of  
researchers relevant to the subject and the public government 
sector to prepare strategic plans for such control. Such plans 
aim at protection and reduction of  the impacts on local 
fisheries and coastal services organizations near the coast of  
the Arabian Gulf  and the Gulf  of  Oman study identified 
the best-fit statistical model that represents the correlation 
between remotely sensed Chl-a as a dependent variable and 
the explanatory variables during the period 2008-2011. The 
Semi-Log Model provided the best fit to data among the 
three models tested. The high R2 value of  0.84 and an F test 
value of  357.3 indicate that the overall model shows a high 
level of  statistical confidence. The explanatory variables that 
were found to be significant at a 99% level of  confidence 
are Calcite Concentration, Instantaneous Photo-synthetically 
Available Radiation, and Normalized Fluorescence Line 
Height. Meanwhile, the Sea Surface Temperature was found 
to be significant at a 95% level of  confidence. These study 
results showed that both climatic and biological explanatory 
variables have highly significant influences on the Chl-a 
concentration in the study area. Furthermore, the study 
validation results showed that short- versus long-term 
temporal series produce different results in terms of  signs, 
variables significances, and model fitness. Such regression 
model results can support awareness and preparedness for 
similar areas that may occur or at similar conditions in the 
future. The framework and methods of  this study offer a case 
study for potential applications to coastal areas extending 
beyond the current study region. Furthermore, the model 
can support the expansion of  the model for foresting and 

develop awareness and preparedness efforts in the study 
area. Lessons learned from this study should apply to similar 
environments around the world.
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APPENDIX A: SUPPLEMENTAL MATERIAL, ALGORITHMS USED TO GENERATE THE STUDY’S 
VARIABLES

Chlorophyll-a Concertation 

The Ocean Colour Index (OCI) algorithm is a three-band reflectance difference executing the difference between Rrs 
(remote sensing reflectance) in the green band, and a reference formed linearly between Rrs in the blue and red bands. 
(Le et al. 2013)

( ) ( ) ( ) ( ){ }green blue
OCI Rrs green Rrs blue   Rrs red Rrs blue

red blue
l - lé ù= l - l + l - lê úl - lë û � (S1a)

where λblue, λgreen, and λred are the instrument-specific wavelengths closest to 443, 555, and 670nm respectively. 
Thus, Equation (S1a) is applied as:

( ) ( ) ( ) ( ){ }555 443
555 443   670 443

670 443
OCI Rrs Rrs Rrs Rrs-é ù= - + -ê ú-ë û � (S1b)

or	 ( ) ( ) ( ) ( ){ }555 443 0.493  670 443OCI Rrs Rrs Rrs Rrsé ù= - + -ë û � (S1c)

Particulate Organic Carbon (POC)

The algorithm behind the generation of  particulate organic carbon (POC) in mg m-3 is calculated using an empirical 
relationship derived from in-situ measurements of  POC and blue-to-green band ratios of  remote sensing reflectance.

This algorithm depends on the availability of  bands cantered at 443 in the blue region and between 547 and 565 nm in 
the green region.

( )
( )
443
555

Rrs
POC a b

Rrs
é ù

= +ê ú
ë û � (S2)

Where a = 203.2 and b = 1.034

Instantaneous Photosynthetically Available Radiation (IPAR)

The iPAR product represents the total PAR (Photosynthetically Available Radiation) incident on the ocean surface at 
the time of  the satellite observation.

700

400

(
 

, )
1

0= -ò diPAR E
h

d
c

ll l
� (S3)

Where h is Planck’s constant, c is the speed of  light, and Ed(λ,0-) is spectral downwelling irradiance just below the sea 
surface. Ed (λ, 0-) is derived by attenuating extra-terrestrial solar irradiance at each sensor wavelength through the 
atmosphere using the derived atmospheric correction model. The iPAR product is reported just above the ocean surface 
and does not account for transmission losses through the interface.

Normalized Fluorescence Line Height (NFLH)

The normalized fluorescence line height (NFLH) is measured in mW cm-2 µm-1 sr-1, calculated as the difference between 
the observed NLW(678) and a linearly interpolated NLW(678) from two surrounding bands (Ocean colour Web: 
Algorithm description).
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( ) ( ) ( )70 11
81

NFLH 678   ( ) x 667   ( ) x 7
81

48nLw nLw nLw= - -
� (S4)

Sea Surface Temperature 

Sea surface temperature is the temperature of  the ocean surface water. It is calculated in units of  °C using the 11µm and 
12µm long-wave infrared bands (Ocean colour-NASA, https://oceancolor.gsfc.nasa.gov/atbd/). 

SSTsat= aij0 + aij1T11μm + aij2(T11μm−T12μm) Tsfc + aij3(sec(θ−1) (T11μm−T12μm) + aij4(mirror) + aij5(θ*) + aij6(θ
2)� (S5)

Where
T11 = Brightness Temperature 11µm Channel
T12 = Brightness Temperature 12µm channel
Tsfc = Reference SST
θ =sensor zenith angle
θ* =sensor zenith angle is made negative for pixels in the first half  of  the scan line
Mirror = mirror side number
Coefficients aij = algorithm coefficient set for the month of year and latitude zone ij 


