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INTRODUCTION

Crop process simulation models (also known as the crop 
growth simulation model) are dynamic mathematical 
models established by combining crop, environmental, 
and cultivation measurement as a whole. They apply 
the principles and methods of  system analysis to 
comprehensively summarize and quantify the developmental 
processes of  crop phenology, photosynthetic production, 
organ formation, yield, and quality formation and their 
relationships with climate. Many such models has been 
developed, including crop–environment–resources 
synthetic system (CERES; United States) (Ma et al., 2017), 
the ORYZA model (Netherlands) (Larijani et al., 2011), 
the O’Lerry model (Australia) (O’Lerry et al., 1985), a 
simulation model for rice–weather (SIMRIW; Japan) (Zhang 
and Tao, 2012), the rice cultivation simulation optimization 
decision–making system (RCSODS; China) (Gao et al., 

1992), and the WheatGrow model (China) (Zhang et al., 
2016). The formation of  crop process simulation models is 
conducive to a quantitative understanding of  crop growth 
dynamics. Crop process simulation models can be used to 
predict crop stage development, dry matter accumulation, 
and grain yield under different weather, soil, and cultivation 
conditions (Qi et al., 1994; Zhou et al., 2019; Li, 2013).

When the climatic environmental conditions and cultivation 
measures are ideal for crop growth, the prediction accuracy 
of  crop process simulation models is higher; however, 
crops are often affected by uncertain factors such as 
climate, environment, or production management measures 
during the field growth process, which results in a large 
deviations in the predicted values from the crop process 
simulation models. In recent years, in order to achieve the 
effective and accurate application of  the models, some 
scholars have adjusted the parameters of  crop process 
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simulation models to reduce the prediction error by using 
some easily obtained model operating variable data (such 
as leaf  area index [LAI]). For example, Ma et al. (2013) 
assimilated LAI data from the moderate-resolution 
imaging spectral-radiometer (MODIS) into the World 
Food Study (WOFOST) crop process model, and reduced 
the estimation error of  winter wheat yield by optimizing 
the model parameters for seedling emergence, initial 
AGBW, and soil moisture content. Machwitz et al. (2014) 
combined the crop process model APSIM (Australia) with 
the radiation transfer model PROSAIL and effectively 
estimated maize AGBW by adjusting model parameters 
(seedling emergence period, initial AGBW, and initial soil 
moisture). Cheng et al. (2016) assimilated the time series 
HJ-1 A/B data into the WOFOST model to optimize 
the LAI model and its parameters, which improved the 
estimation accuracy of  spring maize yield. Ren et al. 
(2011) used LAI as the combination point to integrate the 
shuffled complex evolution-University of  Arizona (SCE-
UA) global optimization algorithm into the environmental 
policy integrated climate (EPIC) model, and achieved an 
accurate estimation of  regional maize yield per unit area 
by adjusting the sowing date, planting density, nitrogen 
fertilizer application, and other parameters. It can be seen 
that the effective application of  crop process simulation 
models requires regional adjustment or optimization 
of  model operating parameters (also called parameter 
regionalization). Therefore, some assimilation methods of  
model and quantitative characteristics of  change in crop 
AGBW need to be studied in depth (Nearing et al., 2012; 
Huang et al., 2016; Xie et al., 2016; Li et al., 2011).

We previously investigated the feasibility of  combining crop 
growth models with remote sensing inversion information 
to estimate winter wheat AGBW in Jianghuai region of  
China during critical growth periods. However, there are still 
limitations in using crop growth models to quantitatively 
estimate the dynamic changes in summer maize AGBW 
(Zhuang et al., 2013; Yin et al., 2018; Wang, 2018). In this 
study, Yancheng City, Jiangsu Province, located on the coast 
of  the East China Sea, was selected as the study area and 
summer maize was selected as the research object. Based on 
the physiological and ecological process of  summer maize, 
we aimed to construct a simulation model of  summer maize 
AGBW formation process. Based on the analysis of  AGBW 
and its variation characteristics at multiple growth stages 
of  summer maize, the feasibility of  using measured LAI 
and AGBW data to adjust the parameters of  the biomass 
simulation model were discussed. We aimed to provide 
a basis for the next step in the use of  remote sensing 
inversion data to assimilate crop process simulation models, 
which is convenient for assisting county-level agricultural 
management departments to adjust farming and planting 
practices to increas production and efficiency.

MATERIALS AND METHODS

Research area and data survey
Yancheng City, Jiangsu Province, along the coast of  the 
East China Sea was selected as the research area (120°13′–
120°56′ E and 32°56′–33°36′ N; Fig. 1). It is located in a silt 
plain, with an altitude of  1.9–4.5 m. The terrain is higher 
in the east and lower in the west; higher in the south and 
lower in the north; and is located in the transitional area of  
the subtropical and warm-humid zone. The four seasons 
are distinct, the annual average temperature is 14.1 °C; 
and the average annual precipitation is 1042.2 mm; and 
the annual average sunshine is more than 2238.9 h. The 
regional climate and soil is suitable for crop growth, and 
the agricultural production conditions are excellent. The 
land-use types in Yancheng City are mainly dry land, paddy 
fields, rivers, lakes, woodlands, construction land, and 
coastal wetlands.

In 2016, 14 field maize study sites (all the following maize 
in this article refers to summer maize) were established in 
Yancheng City using a GPS instrument (Trimble, USA). 
The distance between each study site was approximately 
2 km. The maize varieties were Ningyu 16 and Jinhai 5 
(experimental data presented are mixed data of  the two 
varieties). The LAI and AGBW were observed, measured, 
and sampled every two days during maize growth. The dates 
of  emergence, jointing, tasseling and filling were recorded 
in the growth period view. The LAI was measured with a 
Sun Scan (Delta-t, England). Each study site was measured 
using the plum diagonal method, and the average value was 
calculated after five measurements. The AGBW of  the study 
sites was collected according to the 5-point plum blossom 

Fig 1. Location of Yancheng city in Jiangsu province of China
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method. Five above-ground plants were harvested and 
placed in the sample bag, put in an indoor oven at 105 °C 
for 20 min, further dried at 75 °C, and then weighed. The 
specific calculation method is described by Li et al. (2009) 
and Li et al. (2020). Meteorological data (including total daily 
solar radiation, daily maximum temperature, daily minimum 
temperature, and daily average temperature) were provided 
by the local meteorological department, and technicians from 
the district agricultural department assisted in the experiment. 
The measured LAI and AGBW data were used for model 
parameter adjustment, verification and comparison.

Construction of the biomass simulation model
The total amount of  organic matter produced after 
photosynthesis is called biomass, including the roots, 
stems, leaves, and ears. Biomass can be divided into two 
types: aboveground part (stems, leaves, and ears) and the 
belowground part (root). In this study, only the AGBW of  
maize was studied by combining the biomass simulation 
algorithm in the crop yield estimation model with Li et al. 
(2011) to construct a simulation model of  the biomass 
formation process of  summer maize. The model is called 
the simulation model of  biomass process of  summer 
maize (SMSMBP). During the growth of  maize, AGBW can 
be obtained using the following equation:
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where AGBWi represents the total accumulation of  dry 
matter above the ground (kg/hm2) for the ith day, ∆AGBWi 
is the increase of  dry matter above the ground of  the maize 
plant on the ith day (kg/(hm2·d)), and k represents the 
number of  days from seedling emergence to grain filling. 
∆AGBWi is calculated using the following equation:

 AGBW DPAW RG RMi i i i∆ = ∆ − − , (2)

where ∆DPAWi is the daily plant assimilation weight 
kg/(hm2·d), which represents the total amount of  organic 
matter produced by photosynthesis of  maize plants on the ith 
day; and RGi is the daily growth wasting weight (kg/(hm2·d)), 
which represents the consumption of  organic matter by the 
growth and respiration of  maize plants on the ith day; and 
RMi is the daily maintaining wasting weight (kg/(hm2·d)), 
which represents the consumption of  organic matter by the 
maize plant to maintain respiration on the ith day. RGi and 
RMi can be calculated using the following equations:

 RG ·  DPAWi iGr= ∆  and (3)
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where Gr is the maize growth respiration coefficient, Mr 
is the maintenance respiration coefficient, Q10 is the 

temperature coefficient of  respiration, and Tem is the 
daily average temperature (°C). Gr, Mr, and Q10 are model 
parameters.

The process by which plants form organic matter and store 
energy through photosynthesis is called photosynthetic 
assimilation. Visible light that can be used by plants for 
photosynthesis accounts for 47% to 48% of  the total 
solar radiation (average 47.5%) (Yin et al., 2018), and solar 
radiation is partly lost due to the reflection of  the plant 
canopy. Therefore, the effective daily use of  solar radiation 
by the plant is described by the daily photosynthetic active 
radiation (DPAR, MJ/m2) using the following equation:

 DPAR ·DR ·(1 )i iµ α= − , (5)

where μ is the ratio of  the visible light radiation to the 
total solar radiation, with a value of  0.475 (47.5%). DRi is 
the total daily solar radiation per unit area (MJ/m2); and 
α is the population reflectivity of  summer maize (model 
parameter).

∆DPAWi is the daily plant assimilation weight, which is 
calculated using the core algorithm of  Gao et al. (1992).
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where K is the population extinction coefficient (model 
parameter), LAIi is the leaf  area index, and δ is the 
conversion coefficient between CH2O and CO2, with 
a value of  0.68 (Gao et al., 1992). B and A are model 
parameters (or coefficients). FN and FW are the nitrogen 
influencing factor and moisture influencing factor, 
respectively. Specific calculation methods and steps are 
described in the literature (Wang, 2018; Guo et al., 2012). 
DL is the day length and β is the solar declination, which 
can be calculated using the following equations:

 DL=2•αcos[-(tanφ)•tanβ]/15 and (8)

	 β=23.5•sin [360•(n+284)/365], (9)

where φ is the geographical latitude, and n is the Confucian 
calendar day (n=1, 2, 3, ···, 365).

Model parameter adjustment
The initial parameters of  the model are difficult to obtain 
when the model is initially run, so the experience model 
parameter values refer to the rice–wheat model literature 
(Gao et al.,1992; Li et al.,2011; Yin et al.,2018) of  the 
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research team, namely, the growth respiration coefficient 
(Gr=0.35) and the maintenance respiration coefficient 
(Mr= 0.019), temperature coefficient of  respiration 
(Q10=2), population extinction coefficient (K=0.68), 
population reflectivity (α=8%), model parameter (B=21) 
and model parameter (A=4.9). Due to the abundance of  
fertilizer and water in each test site, it can better meet the 
growth of  maize seedlings, so the initial FN and FW values 
of  the model operation were both set to 1.

The AGBW and LAI were the two main growth variables 
in the maize biomass simulation model. In this study, the 
measured AGBW and LAI data at the jointing stage of  
maize were selected, and the least squares method was 
used to adjust the simulation model parameters. When the 
relative error (RE) between the model prediction data and 
the measured data was between −5% and 5%, the output 
model parameters were the adjusted model parameters. 
The model parameters (or model variables) adjusted at the 
jointing stage included the initial LAI (LAI1) at seedling 
emergence, Gr, Mr, Q10, K, α, B, A, FN, and FW.

Model accuracy test
The relative error (%), root mean square error (RMSE), and 
coefficient of  determination (R2) were used as evaluation 
indicators for model calibration and accuracy verification. 
RMSE represents the fitting accuracy of  the predicted and 
the measured values, and the smaller the value, the better 
the fitting accuracy. The model was calibrated using the 
measured AGBW and LAI data at the jointing stage, and 
the accuracy of  the AGBW change estimation was verified 
using the measured AGBW data from germination to 
grain filling.

RESULTS

Changes of maize AGBW from seedling emergence 
to jointing
Meteorological data (daily solar radiation, daily maximum 
temperature, daily minimum temperature, and daily average 
temperature) from maize emergence to jointing stage and 
the initial parameters of  the model were input into the 
maize biomass simulation model to predict maize AGBW, 
and got the predicted data of  maize AGBW from seedling 
emergence to jointing, as shown in Fig. 2. The dynamic 
change curve in Fig. 2a is the predicted data (average value, 
the same below) of  maize AGBW at 14 study sites. We 
found that the accumulation of  maize AGBW at this stage 
was a dynamic accumulation process.

The overall AGBW of  maize showed an upward trend from 
the seedling emergence to the jointing stage in Fig. 2a. For 
the first 7 days (seedling emergence to the threeleaf  stage), 

maize was in the weaning period, most plant nutrients 
come from seeds; therefore, the AGBW growth was slow. 
Assuming that the increase of  maize AGBW from the 
seedling emergence to the three-leaf  stage was a uniform 
linear growth process, the daily AGBW increase (or the 
daily change of  AGBW) of  maize could be estimated using 
the ratio of  the increase of  maize AGBW from the seedling 
emergence to the three-leaf  stage to the number of  days 
required from the seedling emergence to the three-leaf  
stage, that is, the daily average growth rate of  maize during 
this period was 2.46 kg/(hm2·d), which was relatively low. 
Soil moisture during the weaning period of  maize is a key 
factor affecting seedling emergence.

After the three-leaf  period, the maize AGBW began to 
increase rapidly. From seedling emergence to the jointing 
stage, maize mainly undergoes a vegetative growth and 
differentiation of  roots, stems, and leaves. In this stage, the 
growth of  aboveground stems and leaves increased slowly, 
mainly due to the development of  the maize root system. 
Assuming that the growth of  maize AGBW from the 
three-leaf  stage to the initial jointing stage was a uniform 
growth process, the daily AGBW increase of  maize could 
be estimated using the AGBW growth from the three-leaf  
stage to the jointing stage compared with the number of  
days required for the three-leaf  to the jointing stage, that is, 
the daily average AGBW growth rate of  maize during this 
period was 38.13 kg/(hm2·d). The growth rate from the 
three-leaf  stage to the jointing stage of  maize was 19 times 
that from the seedling emergence to the three-leaf  stage, 
and the maize AGBW increased rapidly from the three-leaf  
stage to the jointing stage. From the three-leaf  stage to 
the jointing stage, maize shifts from relying on the energy 
and nutrients in the seed to taking up energy and nutrients 
from the environment, which makes the AGBW increase 
significantly compared with the seedling emergence to the 
three-leaf  stage. Consequently, suitable water and fertilizer 
conditions are the premise and necessary for the formation 
of  strong seedlings.

The scattered data in Fig. 2a is the measured AGBW data 
(the average value of  14 study sites, the same below) of  
maize from the seedling emergence to the jointing stage 
(20 days after seedling emergence). From the scattered 
data in Fig. 2a, it can be seen that after about 7 days of  the 
seedling emergence, the maize reached the three-leaf  stage, 
and the maize AGBW increased slowly. From 7th – 19th d, 
the maize AGBW started to increase, and there was a basic 
agreement between the measured data of  maize AGBW 
and the predicted dynamic curve, showing a regular change 
trend. In the early stage of  jointing, the difference between 
the predicted and measured maize AGBW increased. The 
measured data were more consistent with the predicted 
data, the RMSE was 18.31 kg/hm2, and the relative error 
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was 3.35%. This shows that the maize biomass simulation 
model can accurately estimate the AGBW before the 
jointing stage of  maize.

Changes in maize AGBW from the jointing to the 
tasseling stage and model adjustment
The meteorological data and model parameters from the 
jointing stage to the tasseling stage (50 d after emergence) 
were input into the maize biomass simulation model to 
predict the maize AGBW from the jointing stage to the 
tasseling stage, and obtained the predicted AGBW data 
from jointing to tasseling stage, as shown in Fig. 3. Fig. 3a 
shows the accumulation process of  maize AGBW from 
the jointing stage to the tasseling stage. It can be seen 
that the maize AGBW showed a rapid upward trend in 
this period. Within 20–25 d after seedling emergence, 
the maize was in the early stage of  nodal growth, and 
AGBW accumulated relatively gently. 25-30 d after seedling 
emergence, maize AGBW increased rapidly. The predicted 
AGBW of  maize at the initial jointing stage was 535.5 kg/
hm2 and that at the tasseling stage was 7036.46 kg/hm2. 
Assuming that the increase of  maize AGBW from the 
jointing stage to the tasseling stage was a uniform linear 
growth process, the growth of  daily AGBW could be 
estimated, that is, the average daily growth rate of  the 
predicted value of  maize AGBW from jointing to tasseling 
was 216.70 kg/(hm2·d), which was approximately five times 
higher than the average daily growth rate of  maize from 
seedling emergence to jointing. Maize leaf  growth mainly 
occurs from seedling emergence to the pre-jointing stage. 
Then, from the jointing stage to the tasseling stage, the 
stem nodes extend and the number of  nodes increases. 
The mass density of  nodes is greater than that of  leaves, 
which leads to a rapid accumulation of  AGBW from the 
jointing stage to the tasseling stage. At this stage of  maize, 
due to the rapid accumulation of  AGBW, a large amount of  
water and nutrients are needed to ensure vigorous growth. 
Therefore, the early stage of  jointing is a critical period of  

fertilizer and water management. Proper fertilizer and water 
management are conducive to the development of  maize 
stalks and spikes, which is the premise and necessary to 
improve the seed setting rate and yield.

It can be seen that the predicted AGBW values of  the 
model were clearly higher than the measured values. The 
predicted maize AGBW in the early stage of  jointing was 
535.5 kg/hm2 and the measured value was 480 kg/hm2, 
with a relative error of  11.56%. The predicted maize 
AGBW at the mid-joint stage was 3799 kg/hm2 and the 
measured value was 3082 kg/hm2, with a relative error of  
23.26%. The predicted maize AGBW in the early stage of  
tasseling was 7036 kg/hm2 and the measured value was 
5794 kg/hm2, with a relative error of  21.44%. The RMSE 
between the predicted and measured values from the 
jointing to the tasseling stage was 825.94 kg/hm2, which 
was quite different between the predicted and measured 
values. The difference between predicted and measured 
values could be because the maize biomass simulation 
model was based on the ideal state (using empirical initial 
parameters), it was different from the actual field growth. 
Therefore, it was necessary to adjust the model parameters 
at this stage.

The parameters of  the maize biomass simulation model 
were adjusted using the measured AGBW and LAI data 
from the jointing stage. LAI1, Gr, Mr, Q10, K, α, B, A, FN, 
and FW were adjusted to 0.3, 0.35, 0.021, 2, 0.56, 12%, 
24.3, 5.1, 0.86, and 0.92, respectively. The maize biomass 
simulation model after parameters adjustment was re-run 
to simulate the AGBW from the jointing stage to the 
tasseling stage, and obtained the predicted maize AGBW, as 
shown in Fig. 3a. After adjusting the model parameters, the 
predicted maize AGBW at the beginning of  the tasseling 
stage was 6036 kg/hm2, which was close to the measured 
value (5794 kg/hm2); the relative error was 4.18%; and the 
RMSE was 219.43 kg/hm2. From the relationship between 

Fig 2. Changes of AGBW from seedling emergence to jointing stage in maize. (a) Dynamic changes of AGBW. (b) Comparison of measured 
and estimated values

ba
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the predicted and measured values after adjusting model 
parameters, it can be seen that the predicted values of  the 
adjusted model were more consistent with the measured 
values, and were evenly distributed on the 1:1 line. The 
predicted effect was better than that before adjusting the 
model parameters. This indicated that the parameters of  
the maize biomass simulation model need to be adjusted 
in the early stage of  tasseling.

Validation of the adjusted model (Changes in maize 
AGBW from the tasseling to the grain filling)
Both the initial model parameters and adjusted model 
parameters were used to run the maize biomass model, 
respectively, and input the meteorological data from the 
tasseling to the grain filling stage (90 d after seedling 
emergence), then obtained the predicted AGBW for the 
growth stage of  maize from the tasseling to the grain filling 
stage (milk maturity), as shown in Fig. 4a. Combining 
with the AGBW dynamic change curve after adjusting the 
parameters in Fig. 4a, we could find that maize AGBW 
accumulation continuously increased after tasseling. From 
50–70 d after seedling emergence, the maize AGBW 
increased relatively rapidly, showing almost a linear growth 
trend. From 70–90 d after seedling emergence, maize began 
to enter the grain filling stage. The predicted maize AGBW 
values from the adjusted model were similar to the measured 
values after sdjusting the model parameters. The predicted 
maize AGBW was 6036 kg/hm2 at tasseling, and that was 
10251 kg/hm2 at the beginning of  grain filling. Assuming 
that the increase of  the predicted maize AGBW from the 
tasseling to the beginning of  grain filling was a uniform 
linear growth process, it can be estimated that the daily 
increase of  the predicted AGBW was 175.63 kg/(hm2·d) 
at this stage. Similarly, the predicted maize AGBW at 
the end of  grain filling stage was 11156 kg/hm2, and the 
daily change of  AGBW during the grain filling stage was 
64.64 kg/(hm2·d), which was 0.3 times higher than the 
daily increase of  AGBW from the jointing to the tasseling 
stage. From the tasseling to the grain filling stage, vegetative 

growth ceases and reproductive growth begins; therefore, 
the maize AGBW accumulation rate slows down than that 
in the previous period.

A 1:1 linear relationship diagram was made according to 
the predicted and measured maize AGBW values from the 
tasseling to the grain filling stage, as shown in Fig. 4b. From 
Fig. 4b, the dynamic change of  the aboveground AGBW 
accumulation from the adjusted model of  maize biomass 
simulation was consistent with the overall trend of  the 
measured data from the tasseling to the grain filling stage. 
The R2 was 0.978 and the RMSE was 182.95 kg/hm2. The 
predicted maize AGBW at the early stage of  tasseling was 
6036 kg/hm2 and the measured value was 5794 kg/hm2, 
with a relative error of  4.18%. The predicted maize AGBW 
at the grain filling stage was 11156 kg/hm2 and the measured 
value was 10785 kg/hm2, with a relative error of  3.44%. 
The predicted maize AGBW was 12492 kg/hm2 before 
parameters adjustment, with a relative error of  15.83%. 
The predicted maize AGBW was little difference with 
the measured maize AGBW after parameters adjustment, 
which indicated that the prediction effect of  the model 
after parameters adjustment was better.

DISCUSSION

Crop process simulation models have good mechanism, 
dynamics, and predictability due to the systematic and 
quantitative expression of  crop growth and development 
process. When the climatic environmental conditions 
and cultivation measures are suitable (ideal state) for 
crop growth, the prediction accuracy of  the crop process 
simulation models are higher. When crop grow in not 
ideal conditions, the prediction data of  the crop process 
simulation models will be greatly biased. In fact, crop 
growth can be affected by multiple factors, such as climate 
(e.g. temperature, light, and rainfall), environment (e.g. 
soil texture, soil moisture), and production management 
measures (e.g. sowing amount, planting density, and 

Fig 3. Prediction of AGBW change from jointing to tasseling in maize before and after adjustment of model parameters.  (a) Dynamic changes 
of AGBW. ( b) Comparison of measured and estimated values

ba
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fertilization). Therefore, reasonable adjustment of  model 
parameters has become an effective choice for improving 
the prediction accuracy of  crop process simulation models.

Most studies cited foreign models (e.g. CERES model, 
ORYZA model, WOFOST model) (Ma et al., 2013; 
Mirima et al., 2014; Li et al., 2011; Yin et al., 2018; Pan 
et al., 2019; Guo et al., 2012; Ma et al., 2013), and used 
the LAI as a constraint condition or combination point 
to adjust the parameters of  the crop process simulation 
models, that is to say, compared predicted LAI from the 
model with measured LAI, when the two values were 
similar or met the expected expectations, obtained adjusted 
model parameters. Used adjusted model parameters 
could effectively estimation crop AGBW or yield. Before 
jointing, summer maize maninly grows leaves, LAI changes 
obviously and is easy to obtain. It is ideal to use LAI as the 
constraint condition for adjusting the model parameters. 
After jointing, joint elongation occurs, the number of  joints 
increases, and ear length increases, the growth of  LAI 
slows down, and the increase in AGBW changes obviously. 
Taking the bivariate LAI and AGBW as the constraints to 
adjust model parameters at the same time is more conducive 
to the convergence of  the simulation model operation and 
gets the appropriate model parameters. This study used 
the experimental data of  field summer maize AGBW in 
Yancheng City, Jiangsu Province along the east coast of  
China, with the help of  Gao Liangzhi’s crop photosynthesis 
core algorithm (Gao et al., 1992), a simulation model 
of  the summer maize biomass formation process was 
constructed, which was inheritance and redevelopment 
of  the free intellectual property model of  the research 
and development unit of  the project. With the aid of  the 
summer maize biomass formation process simulation 
model, based on the trend analysis of  the summer maize 
AGBW at multiple growth stages, the parameters of  the 
maize biomass model were adjusted by using the bivariate 
LAI and AGBW at the jointing stage to better achieved 
the effective estimation of  AGBW of  two growth stages, 
from jointing to tasseling stage and from tasseling to grain 

filling stage, which also provids a reference for subsequent 
research on the assimilation of  remote sensing data and 
crop models.

The combination of  remote sensing data and crop process 
simulation models to estimate regional crop AGBW or 
yield is an important issue in agricultural remote sensing 
research (Li et al., 2020; Guo et al., 2012; Li et al., 2018; 
Zhi et al., 2014). Maize occupies the second largest 
crop area in the Jianghuai region of  China, after rice 
and winter wheat. Using remote sensing methods to 
effectively monitor the growth dynamics of  field maize 
in time is conducive to improving the information level 
of  county production management (Gu et al., 2016; 
Zhi et al., 2014; Kross et al., 2015; Li et al., 2014). This 
study used a crop process simulation model to analyze 
the trend of  AGBW change in the three growth stages 
of  summer maize, from seedling emergence to jointing, 
from jointing to tasseling, and from tasseling to grain 
filling, and clarified the AGBW accumulation regular and 
nutrient absorption characteristics in the corresponding 
growth stages, which can assist county-level agricultural 
management departments to rationally adjust fertilizer and 
water management measures, increasing grain production. 
Subsequent research will further consider using remote 
sensing data to retrieve LAI and AGBW (Pan et al., 2019; 
Li et al., 2008), and study the assimilation and application 
of  remote sensing data and crop process simulation model 
to enhance the universality and effectiveness of  maize 
biomass process simulation model in maize planting 
district along the east coast of  China.

CONCLUSION

We examined summer maize on the coast of  the East 
China Sea. Based on the physiological and ecological 
processes of  maize, a simulation model of  the biomass 
process of  summer maize (SMSMBP) was constructed. 
Based on the simulated and predicted AGBW in three 

Fig 4. Changes of AGBW from tasseling to grain filling in maize before and after model adjustment. (a) Dynamic changes of AGBW. (b) Comparison 
of measured and simulated values
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stages of  maize, from seedling emergence to jointing, 
from jointing to tasseling, and from tasseling to the grain 
filling, we used the concept of  daily average growth rate 
(kg/(hm2·d)) to quantitatively analyze the characteristics 
of  AGBW accumulation and its dynamic change features 
in three different growth stages of  maize. Using the initial 
model parameters to run the simulation model of  the 
maize biomass formation process, the predicted effect of  
AGBW from seedling emergence to jointing was better, 
but the AGBW prediction errors for the other two growth 
stages from jointing to tasseling and from tasseling to grain 
filling were significantly higher than measured data. After 
adjusting the model parameters using the measured LAI 
and AGBW at the jointing stage to run the simulation 
model, the predicted AGBW values were more consistent 
with the measured data in two growth stages from 
jointing to tasseling and from tasseling to grain filling. 
The original predicted AGBW was 7036.46 kg/hm2, the 
measured AGBW was 5794 kg/hm2 before tasseling, with 
a relative error was 23.26%; and the predicted AGBW 
was 6036kg/hm2 after adjusting parameters, with a 
relative error was 4.18%. The original predicted AGBW 
was 12492 kg/hm2, the measured AGBW was 10785 kg/
hm2 during the grain filling stage, with a relative error was 
15.83%; and the predicted AGBW was 11156 kg/hm2 after 
adjusting parameters, with a relative error was 3.44%. The 
new model operating parameters were as follows: LAI1, 0.3; 
Gr, 0.35; Mr, 0.021; Q10, 2; K, 0.56; α, 12%; B, 24.3; and 
A, 5.1. These parameter values could be conducive to run 
simulation models of  maize biomass formation in similar 
summer maize study areas.
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