RESEARCH ARTICLE

Potential anticancer activity of chemically characterized extract of *Olea europaea* (Olive) leaves

Shehla Nasar Mir Najibullah¹, Javed Ahamad^{2*}, Shahnaz Sultana³, Subasini Uthirapathy⁴

¹Department of Pharmacognosy, Faculty of Pharmacy, King Khalid University, Abha, KSA, ²Department of Pharmacognosy, Faculty of Pharmacy, Tishk International University, Erbil, Iraq, ³Department of Pharmacognosy, Faculty of Pharmacy, Jazan University, Jazan, KSA, ⁴Department of Pharmacology, Faculty of Pharmacy, Tishk International University, Erbil, Iraq

ABSTRACT

Olea europaea Linn. (Olive) is considered as essential component of Mediterranean diets. Olive leaves, fruits, and oil are traditionally known for several health benefits including diabetes, cardiac complications, cancer, etc. The objective of the present study is to determine the anticancer potential of chemically characterized *O. europaea* extract in MTT assay and EB/AO double staining method using Human lung cancer cell lines (A549). The chemical constituents present in the ethyl acetate extract of *O. europaea* leaves were characterized by GC-MS and its cytotoxic activity was assessed by MTT assay and EB/AO double staining method. The GC-MS analysis identified 63 chemical constituents, and neophytadiene (21.80%), zingiberenol (12.36%), and allohimachalol (5.49%) was found as major chemical constituents in ethyl acetate extract of *O. europaea* leaves. *O. europaea* produces a time and dose-dependent inhibition of cell proliferation of A549 cell lines. The cell viability of A549 cell lines after 24 hrs treatment with *O. europaea* ranged from 97.96±3.44 to 18.95±2.14 % for a concentration range of 0.5-500 µg/mL, respectively, with IC₅₀ value of $21.91 \pm 1.8 µg/mL$. EB/AO double staining shows significant apoptosis in early and late apoptotic, and necrotic cells with increased volume and showed uneven orange-red fluorescence at their periphery. The study outcome shows that *O. europaea* extract significantly inhibited cell proliferation and apoptosis in human lung cancer (A549) cell lines, and it also explores the chemical composition of *O. europaea* leaves extract.

Keywords: Apoptosis; A549 cell lines; Cancer; GC-MS; MTT assay; Olea europea; Olive

INTRODUCTION

Olea europaea Linn. (Family: Oleaceae) is commonly known as Olive and Zaytoon, and its fruits and oil are predominantly used in the Mediterranean diet. The Olive plant is a major crop cultivated in the Mediterranean, and it is traditionally used as salad, cooking food products, and for skin and hair care (Abaza et al., 2015). The leaf of Olive is traditionally used for the treatment of diabetes (Mootoosamy and Mahomoodally, 2014). The Olive tree is emerged as special to mankind as it has several beneficial roles in maintaining human health and also Olive is reported throughout historical and religious texts (Kaniewski et al., 2012). Olive fruits and leaves have several pharmacological actions including cardioprotective, antidiabetic, hypolipidemic, neuroprotective, antioxidant, and hepatoprotective (Ahamad et al., 2019; Janahmadi et al., 2015; Andreadou et al., 2006; Hadrich et al., 2016; Barbaro et al., 2014; Al-Azzawie and Alhamdani, 2006). Olive has been reported as a beneficial agent for the treatment of different forms of cancer (De Marino et al., 2014; Hernández-Corroto et al., 2018; Castejón et al., 2000; Antoniou and Hull, 2021).

The most common cancer-related death worldwide is now lung cancer. Lung cancer is thought to be mostly caused by smoking. According to Collins et al. (2007), there are three types of lung cancer: adenocarcinoma, squamous cell carcinoma, and large cell carcinoma. Treatment options for lung cancer range from chemotherapy to surgical resection based on the type and stage of the tumor that has been found. Severe negative consequences have been linked to both chemotherapy and surgical resection. Palliative therapy is, therefore, necessary in addition to chemotherapy for the treatment of lung cancer (Jones and Baldwin, 2018). Cancer and other chronic human diseases are reported to be treated by medicinal plants (Gezici and ekerolu, 2019).

Olive extracts and its bioactive compounds have shown potential anticancer activity in many *in-silico, in-vitro*, and

*Corresponding author: Dr. Javed Ahamad, Assistant professor, Department of Pharmacognosy, Faculty of Pharmacy, Tishk International University, Erbil, Iraq. E-mail: jas.hamdard@gmail.com

Received: 02 March 2023; Accepted: 30 September 2023

in-vivo studies using different cancer cell lines (Antoniou, and Hull, 2021; Castejón et al., 2020; Imran et al., 2018; Qais et al., 2022). In a study conducted by Gallazzi et al., (2020) on lung cancer cell lines using an extract of Olive Mill Wastewater (OMWW), the study finding shows that OMWW downregulates growth, adhesion, and invasion in lung cancer cells. In another study on lung cancer, Olive leaf extract ameliorates benzo (a) pyrene-induced lung cancer through Nrf2 and NFKB pathway (Majumder et al., 2021). The current study involves the standardization of Olive leaf extract by GC-MS and then standardized extracts' anticancer potential was determined by MTT assay and EB/AO double staining method using Human lung cancer cell lines (A549).

MATERIALS AND METHODS

Plant materials and chemicals

The Olea europaea fresh leaves (500 g) were collected from Erbil, Iraq in the month of March 2021. The plant is identified by Dr. Raad A. Kaskoos, Pharmacognosist, Faculty of Pharmacy, Hawler Medical University, Erbil, Iraq, and a voucher specimen (PRL/2021/03) was kept in the Department of Pharmacognosy, Faculty of Pharmacy, Tishk International University, Erbil, Iraq.

The human lung cancer cell lines (A549) was procured from NCCS, Pune, India. Phosphate Buffered Saline (PBS) salts, Penicillin-Streptomycin, ETBr, and Acridine orange were acquired from (Sigma Aldrich, USA), whereas Dulbecco's Modified Eagle Medium (DMEM), Trypsin-EDTA, Fetal Bovine Serum (FBS), and Penicillin/Streptomycin Antibiotic Solution were purchased from (Gibco USA). Dimethyl sulfoxide (DMSO), 3-4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide (MTT), and 1X PBS were acquired from Sigma-Aldrich in the United States and Himedia in India, respectively. Tarson (India) supplied 96 well tissue culture plates and wash beakers. Other chemicals and solvents were all of an analytical grade.

Preparation of O. europaea extract

O. europaea fresh leaves were first dried in the shade with enough air before being ground into a coarse powder in a mixer. *O. europaea* coarse powder (50 g) was extracted using an ultrasonicator (Elma, Germany). Drug powder was placed in a stoppered conical flask and extracted using an ultrasonicator at 200 W power for 30 minutes at 40 °C with 250 mL of ethyl acetate. A rotary evaporator (Buchi, Switzerland) was used to concentrate the extract at a temperature of 40 °C. The extract was then air-dried and kept in a refrigerator at a temperature between 2-4 °C till usage.

GC-MS analysis of O. europaea extract

The chemical composition of the ethyl acetate extract of *O. europaea* was determined by the GC-MS method. For the analysis of the chemical composition, we used our previous method published elsewhere (Ahamad et al., 2020). The compounds were identified by mass fragmentation obtained from mass spectra obtained by GC-MS analysis with those stored in the spectrometer database of NIST, NBS 54 K.L, WILEY8 libraries and published literature (Adams, 2007; Ali, 2001; Kaskoos et al., 2009; Ahamad et al., 2020).

MTT assay to assess cytotoxicity

The cytotoxic activity of *O. europaea* was assessed by MTT assay against human lung cancer cell lines (A549). The assay was performed by the method described by Marquez et al., (2020). *O. europaea* ethyl acetate extract was assessed for anticancer activity in MTT assay for concentrations ranging from 0.5 to 500 μ g/mL. The IC₅₀ value was calculated using GraphPad Prism 6.0 software (USA). The percent cell viability was calculated by the following formula:

Cell viability(%) =
$$\frac{\text{OD test}}{\text{OD control}} \times 100$$

Assessment of apoptosis by dual AO/EB method

Dual ethidium bromide (EB)/acridine orange (AO) staining was performed to study the effects of the olive extract on the apoptosis of lung cancer cell lines (A549). The IC₅₀ value obtained from the MTT assay of O. europaea extract was selected as the dose in this study i.e. 21.91 μ g/mL. The study was performed by the method proposed by Liu et al., (2015) with suitable modification, briefly, 5 x 10⁵ cells/mL of A549 cells were plated in a 96-well tissue culture plate and incubated for 24 hr in a DMEM growth medium. The cells were then exposed to 21.91 g/mL of O. europaea ethyl acetate extract in serumfree DMEM media following incubation. The plate was incubated for 24 hours at 37 °C with 5% CO₂. 10 L of 1 mg/mL acridine orange and ethidium bromide were added to the wells after incubation and gently mixed. The plate was then centrifuged at 800 rpm for 2 minutes, and reviewed within an hour, and at least 100 cells were observed using an Olympus fluorescence microscope and a fluorescent filter.

RESULTS AND DISCUSSION

GC-MS analysis

The chemical constituents present in the ethyl acetate extract of *O. europaea* leaves were determined by the GC-MS method and the results were presented in Table 1. Sixty-three chemical constituents were identified in the ethyl acetate extract of *O. europaea* leaves which represents about 78.06% of total chemical compounds

Najibullah, et al.

Table 1: Chemical composition of ethyl acetate extract of <i>O. europaea</i> le	eaves
---	-------

1. Propanci acid, ellyl ester 3.103 7.00 2.18 2. Elhans, 1.1 - diehoxy 3.31 7.0 1.24 3. Hexnal 3.876 797 0.16 5. Decame 8.877 999 0.13 5. Decame 8.887 999 0.13 6. Berazyl alcohol 10.274 10.74 0.16 7. cis-Linslyl oxide 10.781 1074 0.16 8. 2.Pherylethanol 13.36 113 0.25 10. 4.Methyl hundecene 11.940 1124 0.13 11. H-Pyrrole-Zichone, Schult-Hunethyl- 12.107 1192 0.11 12. Dadecane, Zi, 11-trimethyl- 13.820 1228 0.14 15. Hydroxychronelial 13.820 1291 0.11 17. Hydroxychronelia 13.828 1291 0.11 17. Hydroxychronelia 13.828 1291 0.11 17. Hydroxychronelia	S. No.	Name of chemical compound	RT	KI	% Composition
2. Ethan, 1, 1-diethoy, 3,313 710 1,24 3. Hexanal 3,76 77 0,16 4. Camphene 7,066 953 0,16 5. Berayl alcohol 10,274 1027 0,10 7. cis-Linaly oxide 10,71 1074 0,13 8. 2.Phenylethanol 10,306 1132 0,13 9. 3.4-Omethyletnzyl alcohol 11,306 1113 0,25 10. 4-Methyl 1-indecene 11,306 1132 0,13 11. 1H-Pyrole2,5-dione,3-ethyl-4-methyl- 12,107 1192 0,11 12. Dadeane 12,8271 1207 0,10 13. Pulegone 12,871 1207 0,10 14. Bornyl formate 13,802 1240 0,17 15. Hydroxyltonolial 13,902 1240 0,17 16. Dadeane, 2,6,14:methyl- 15,549 1290 0,17 17. Thymol 15,078 1290 0,17 18. Dadeane,2,6,14:methyl	1.	Propanoic acid, ethyl ester	3.103	700	2.16
3. Hexanel 3.876 797 0.16 5. Decame 8.687 999 0.13 6. Benzyl alochol 10.274 1027 0.10 7. cls-Lindyl oxide 10.781 1074 0.18 8. 2-Phenylchanol 10.906 1082 0.13 9. 3.4-Dimertylbranol 11.940 1124 0.13 10. 4-Metnyl Lundecene 11.940 1124 0.13 11. 11-H-Pyrole 2-Schone, 3-ethyl-4-metnyl-4 12.81 1199 0.19 12. Dodecane 12.820 128 0.14 13. Pulegone 12.81 1199 0.19 14. Bornyl formatic 13.802 1228 0.14 15. Dodecane, 2.6, 11-tinmethyl-4 14.495 1275 0.11 16. Dodecane, 4.6-dimethyl 13.802 128 0.32 17. Thymol 15.07 126 0.32 0.32 17. Dindroceduan 15.16 1325 0.35 18. Dindroceduan	2.	Ethane, 1,1-diethoxy	3.313	710	1.24
4. Camphene 7.066 953 0.16 5. Decane 867 999 0.13 6. Benzyl alcohol 10.274 1027 0.10 7. Als-Linghlycade 10.781 1074 0.13 8. 2Phenylethanol 10.306 1133 0.25 9. 3.4-Unnethylbenzyl alcohol 11.306 1113 0.25 10. 4-Methyl 1-modecane 12.871 1109 0.19 13. Dodecane 12.871 1207 0.10 14. Bornyl formate 13.802 1240 0.15 15. Hydroxychronelia 13.902 1240 0.16 16. Dodecane, 2.6, 11-tinnethyl- 14.495 1275 0.11 17. Tridacane 15.398 1291 0.11 17. Dindyrocelunan 15.398 1291 0.12 20. Neoicopulegol 16.277 1309 6.22 21. Dodecane, 4.6-dinethyl 17.8	3.	Hexanal	3.876	797	0.16
5. Decare 5.667 999 0.13 6. Bernyl atohoh 0.274 1027 0.10 7. cis-Linayl oxide 10.781 1074 0.161 8. 2-Prenylethanol 10.906 1082 0.13 9. 3.4-Dimethylenzyl aloohol 11.306 1113 0.28 10. 4-Methyl-Lundecene 11.940 1124 0.13 11. 11-H-Pyricle 2-Schore, 2-ethyl-4-methyl- 12.107 1182 0.14 12. Dedecane 2.851 11207 0.10 13. Pulegone 12.871 1207 0.10 14. Bonyl formate 13.820 1280 0.17 15. Pydroxycironelial 15.398 1291 0.11 17. Tymol 15.398 1291 0.11 18. Dirydroxcirina 15.816 1382 0.82 21. Dodcane, 2.6,11-trimethyl- 15.816 1386 0.85 22. Dirydroxcinian	4.	Camphene	7.066	953	0.16
6. Bengy lacbhol 10,274 1027 0.10 7. cisLunaly coride 10,781 1074 0.18 8. 2-Phenylethanol 10,906 1082 0.13 9. 3,4-Dimethylbenzyl alcohol 11,306 1113 0.28 10. 4-Methyl t-nudecene 12,107 1192 0.11 11. H-Pyrole-2,5-dione, 3-ethyl-4-methyl- 12,107 1192 0.11 12. Dodecane 12,871 1207 0.10 13. Pulegone 12,871 1207 0.10 14. Bomyl formate 13,802 1228 0.117 17. Trymol 15,079 1280 0.17 18. Dirlytorekulan 15,388 1281 0.11 19. Dirlytorekulan 15,398 1282 0.32 21. Dodecane, 4,6-dimethyl 16,851 1386 0.55 22. 2,510-trimathyl 17,84 1376 0.12 24. Dodecane, 4,6-di	5.	Decane	8.687	999	0.13
7. cb.Linayl cxide 10.781 1074 0.161 8. 2.Phenylethanol 10.906 1082 0.13 9. 3.4-Dimethylenzyl alcohol 11.306 1113 0.25 10. 4-Methyl 1-undecene 11.940 1124 0.13 11. 11-HPyrole 2-Schone 3-ethyl-4-methyl- 12.107 1192 0.11 12. Dedecane 12.871 1207 0.10 13. Pulegone 12.871 1207 0.10 14. Bornyl formate 13.820 1228 0.14 15. Dedecane, 2, 11-trimethyl- 14.485 1275 0.11 17. Thymol 15.079 1280 0.17 18. Dihydroedulan 15.079 1280 0.12 21. Dedecane, 4, 6-dimethyl 16.812 1382 0.35 22. 2,3-Dihydro-benzofuran 16.955 1388 0.55 23. Eihyl (24,2) nona - 4,-dieneate 17.154 1376 0.12 <td< td=""><td>6.</td><td>Benzyl alcohol</td><td>10.274</td><td>1027</td><td>0.10</td></td<>	6.	Benzyl alcohol	10.274	1027	0.10
8. 2-Phenylethanol 10.906 1082 0.13 9. 3-4-Dinetylhenyl alcohol 11.940 1124 0.13 11. 1H-Pyrole-2.5-dione, 3-ethyl-4-methyl- 12.107 1122 0.11 12. Dedecane 12.47 1207 0.10 13. Pulegone 12.871 1207 0.10 13. Pulegone 12.871 1207 0.10 15. Hydroxyltronella 13.902 1240 0.15 16. Dodecane, 2.6.11-trimethyl- 14.495 1275 0.11 17. Thymol 15.079 1280 0.32 10. Tridecane 15.490 1290 0.32 21. Dodecane, 4.6-dimethyl 15.615 1325 0.35 22. 2.5.01-bydro-benzolaran 15.615 1325 0.35 22. 2.5.01-bydro-benzolaran 15.87 1388 0.82 23. Dodecane, 2.6.10-trimethyl 7.88 1382 0.28 24.	7.	cis-Linalyl oxide	10.781	1074	0.16
9. 3.4-Dimetry/benzy/lachol 11.366 11.31 0.25 10. 4-Metry/1-undecene 11.940 1124 0.13 11. 11-Prynole-2.5-dione, 3-ethyl-4-metryl- 12.107 1192 0.11 12. Dodecane 12.871 1207 0.10 13. Pulegone 12.871 1207 0.10 14. Bory/Iormate 13.802 1240 0.15 15. Hydroxycitonelial 13.802 1240 0.15 16. Dodecane, 2.6,11-trimethyl- 14.465 1275 0.11 17. Thymol 15.079 1290 0.12 18. Dihydroedulan 15.409 1291 0.11 19. Tridecane 15.409 1290 0.32 21. Dodecane, 4.6-dimethyl 16.516 1328 0.35 22. 2.3-Dilydro-benzduran 16.457 1368 0.52 23. Indydroechindolide 18.512 1368 0.82 24. Dodecane, 2.6,10-trimethyl 7.86 1363 0.56 25.	8.	2-Phenylethanol	10.906	1082	0.13
10. 4.Methyl 1-undecene 11.40 11.42 0.13 11. 11.Helyrole-2.5-clione, 3-ethyl-4-methyl- 12.107 11.92 0.11 12. Dodecane 12.891 11.99 0.19 13. Pulegone 12.871 1207 0.10 14. Bornyl formate 13.802 1228 0.14 15. Hydroxycitronelial 13.802 1240 0.15 16. Dodecane, 2.6,11-trimethyl- 14.405 1275 0.11 17. Thynod 15.079 1290 0.32 20. Neisopulegol 16.277 1309 1.62 21. Dodecane, 2.6,10-trimethyl 16.816 1325 0.35 22. 2.3-Dihydro-benzofuran 16.865 1368 0.55 23. Ethyl (2.42)-none2.4-dienaate 17.154 1376 0.12 24. Dodecane, 2.6,10-trimethyl 17.888 1382 2.88 25. 1-Tetradecene 18.507 1472 0.21 26. Isceurenol 18.512 148 0.36	9.	3,4-Dimethylbenzyl alcohol	11.306	1113	0.25
11. 14-Proribe-2,5-dione, 3-ethyl-4-methyl- 12,107 1192 0.11 12. Dodecane 12,591 1192 0.19 13. Pulegone 12,871 1207 0.10 14. Bornyl formate 13,802 1240 0.15 15. Hydroxycironellal 13,802 1240 0.15 16. Dodecane, 2,6,11-trimethyl- 14,468 1275 0.11 17. Thymol 15,079 1290 0.17 18. Dihydroedulan 15,398 1291 0.11 19. Tridecane 16,477 1309 1.62 21. Dodecane, 4,6-dimethyl 16,516 1325 0.35 22. 2,3-Dihydro-benzofuran 16,851 1376 0.12 24. Dodecane, 2,6,10-trimethyl 17,154 1376 0.12 25. 1.Fortadecane 18,250 1479 0.16 26. Isoeugonol 18,512 1429 0.27 27. o-curcumene 18,503 1479 0.16 28. o-fortorume	10.	4-Methyl 1-undecene	11.940	1124	0.13
12. Dodecane 12.671 1207 0.19 13. Pulegone 12.671 1207 0.10 14. Bornyl formate 13.820 1228 0.14 15. Hydroxycitronella 13.902 1240 0.15 16. Dodecane. 2.611-trimethyl- 14.485 1275 0.11 17. Trymol 15.079 1290 0.12 18. Dihydroedulan 16.538 1299 0.32 20. Neoisopulegol 16.277 1309 1.62 21. Dodecane. 2.61-trimethyl 16.856 1368 0.55 22. 2.30/bydro-benzofuran 16.856 1368 0.55 23. Ethyl (2E.42)-nons2.4-denoate 17.154 1376 0.12 24. Dodecane. 2.6.10-trimethyl 17.868 1382 2.86 25. 1-Teradecene 18.512 1429 0.27 27. o-Curoumene 18.525 1479 0.16 28. Dibrdroxderidoloide 19.285 1634 0.29 <t< td=""><td>11.</td><td>1H-Pyrrole-2,5-dione, 3-ethyl-4-methyl-</td><td>12.107</td><td>1192</td><td>0.11</td></t<>	11.	1H-Pyrrole-2,5-dione, 3-ethyl-4-methyl-	12.107	1192	0.11
13. Puegone 12.871 1207 0.10 14. Bornyl formate 13.820 1228 0.14 15. Hydroxyttonelial 13.920 1240 0.15 16. Dodecane, 2,6,11 timethyl- 14.495 1275 0.11 17. Thymol 15.079 1280 0.17 18. Dihydroedulan 15.398 1291 0.11 19. Tidecane 15.490 1299 0.32 20. Neoisopulegol 16.277 1309 1.62 21. Dodecane, 4,6-dimethyl 16.516 1325 0.35 22. 2,3-Dihydrobenzoturan 16.516 1325 0.55 23. Ethyl (2E,42)-nona-2,4-dienoate 17.154 1376 0.12 24. Dodecane, 2,6,10-timethyl 17.888 1382 0.88 25. 1.Tetradecene 18.512 1479 0.16 27. eOuroumene 18.502 1472 0.21 28. o.Morphemes 19.101 1485 0.35 30. (Horporanilyl atob	12.	Dodecane	12.591	1199	0.19
14. Bory formate 13.820 128 0.14 15. Hydroxycitronellal 13.902 1240 0.15 16. Dodecane, 2.6, 11-trimethyl- 14.495 1275 0.11 17. Thymol 15.079 1280 0.17 18. Dihydrochulan 15.98 1291 0.32 20. Neoisopulegol 16.277 1309 1.62 21. Dodecane, 4.6-dimethyl 16.516 1325 0.35 22. 2.3-Dihydrochenzotran 16.955 1386 0.55 23. Ethyl (2E,42)-nona-2,4-dienoate 17.54 1382 0.48 24. Dodecane, 2,6,10-trimethyl 17.88 1382 0.82 25. 1-Tetradocene 18.512 1429 0.27 27. o-Curcumene 18.590 1472 0.21 28. Isocuponilene 19.285 1486 0.29 39. c-Morphemes 19.101 1485 0.56 30. (-)-Eremophilene 19.285 1486 0.29 31. Dimeth	13.	Pulegone	12.871	1207	0.10
15. Hydroxychronellal 13.902 12.40 0.15 16. Dodecane, 2,6,11-trimethyl- 14.495 1275 0.11 17. Thymol 15.079 1280 0.17 18. Dhydroedulan 15.079 1280 0.32 20. Neoisopulegol 16.277 1309 1.62 21. Dodecane, 4,6-dimethyl 16.616 1325 0.35 22. 2,3-Dinydro-benzofuran 16.955 1368 0.55 23.40 Ethyl (2E,42)-nona-2,4-dienoate 17.184 1376 0.12 24. Dodecane, 2,6,10-trimethyl 17.884 1382 2.88 25. 1-Tetradecane 18.512 1479 0.16 27. -c-Curcumene 18.501 1479 0.16 28. Diodychactinidiolide 18.675 1479 0.16 29. -c-Curcumene 19.285 1503 0.56 31. Dimethyl 3,4-pyridinedicarboxylate 19.285 1503 0.56 32. (-H)Eremophilene 19.485 1554 0.16	14.	Bornyl formate	13.820	1228	0.14
16. Dodecane, 2,6,11-trimethyl- 14,495 1275 0.11 17. Thymol 15,079 1290 0.17 18. Dihydroedulan 15,390 1290 0.17 19. Tridecane 15,490 1299 0.32 20. Neoisopulegol 16,277 1309 0.32 21. Dodecane, 4,6-dimethyl 16,516 1325 0.35 22. 2,3-Dihydro-benzofuran 16,955 1368 0.55 23. Ethyl (2,4-)ronac,2,4-dienoate 17,154 1376 0.12 24. Dodecane, 2,6,10-trimethyl 17,888 1382 2,88 25. 1-Tetradecene 18,512 1429 0,27 27. α-Curcumene 18,512 1429 0,27 28. Isoeugenol 18,512 1429 0,27 29. α-Morphemes 19,010 1485 0,35 30. (+)-Eremophilene 19,235 1486 0,29 31. Dimethyl 3,4-byrdinedicarboxylate 19,851 1533 0,56 33.	15.	Hydroxycitronellal	13.902	1240	0.15
17. Tnymol 15.079 1290 0.17 18. Dirydrocdulan 15.398 1291 0.11 19. Tridecane 15.398 1291 0.11 19. Tridecane 15.398 1291 0.32 20. Neisopulegol 16.277 1309 1.62 21. Dodecane, 4.6-dimethyl 16.955 1568 0.55 22. 2.3-Dirydro-benzofuran 16.955 1368 0.55 23. Ethyl (2E.42)-none.2.4-dienoate 17.154 1376 0.12 24. Dodecane, 2.6, 10-trimethyl 17.888 1382 2.88 25. 1-Tetradecene 18.512 1429 0.27 26. Isoeugenol 18.675 1479 0.16 29. c.Morphemes 19.101 1485 0.35 30. (+)-Eremophilene 19.353 1603 0.66 31. Dimethyl 3.4-pyridinedicarboxylate 19.821 1537 0.37 32. (+)-Eremophilene 19.353 1603 0.26 33. Johon	16.	Dodecane, 2,6,11-trimethyl-	14.495	1275	0.11
18. Dilydroedulan 15.398 1291 0.11 19. Tridecane 15.490 1299 0.32 20. Neoisopulegol 16.277 1309 1.62 21. Dodecane, 4.6-dimethyl 16.516 1325 0.35 22. 2.3-Dihydro-benzoturan 16.955 1368 0.55 23. Ethyl (2E,42)-nona-2,4-dienoate 7.154 1376 0.12 24. Dodecane, 2,6,10-trimethyl 17.888 1382 2.88 25. 1-Tetradecene 18.512 1429 0.27 27. α-Curcumene 18.590 1472 0.21 28. Dihydroachindiolide 18.675 1479 0.16 29. α-Morphemes 19.101 1485 0.35 30. (+)Eremophilene 19.235 1486 0.29 31. Dimethyl 3-4-pridineidicarboxylate 19.285 1534 0.16 32. (+)Eremophilene 19.353 1503 0.56 33. Homovanilyl alcohol 19.604 164 164 34.<	17.	Thymol	15.079	1290	0.17
19. Tradecane 15.490 1299 0.32 20. Neoisopulegol 16.277 1309 1.62 21. Dodecane, 4.6-dimethyl 16.855 1368 0.55 22. 2.3-Dihydro-benzofuran 16.955 1368 0.55 23. Ethyl (2E, 42)-nona-2,4-dienoate 17.154 1376 0.12 24. Dodecane, 2,6,10-trimethyl 17.881 1382 2.88 25. 1-fetradecene 18.254 1388 0.82 26. Isoeugenol 18.512 1479 0.21 27. ca-Curoumene 18.675 1479 0.16 29. ca-Morphemes 19.101 1485 0.35 30. (+)-Eremophilene 19.235 1486 0.29 31. Dimethyl 3.4-pyrdinedicarboxylate 19.863 1503 0.56 32. (+)-Eremophilene 19.435 1534 0.16 34. Nerolical 19.864 1548 1.04 35. 3.4-Dihydroxybenzoicaid 19.864 15457 0.37 36. <td>18.</td> <td>Dihydroedulan</td> <td>15.398</td> <td>1291</td> <td>0.11</td>	18.	Dihydroedulan	15.398	1291	0.11
20. Neoisopulegol 16.277 1309 1.62 21. Dodecane, 4.6-dimethyl 16.516 1325 0.55 22. 2.3-Dihydro-benzofuran 16.516 1325 0.12 24. Dodecane, 2.6, 10-trimethyl 17.888 1382 2.88 25. 1-Tetradecene 18.512 1429 0.27 27. a-Curcumene 18.512 1429 0.27 27. a-Curcumene 18.590 1472 0.21 28. Dihydroactinidiolide 18.675 1479 0.16 29. a-Morphemes 19.101 1485 0.35 30. (-Fremophilene 19.235 1486 0.29 31. Dimetryl 3.4-pyridinedicarboxylate 19.455 1534 0.16 32. (+)Eremophilene 19.353 1503 0.56 33. Homovanily lacohol 19.604 1548 1.04 35. 3.4-Dihydroxybenzoic acid 19.821 1557 0.37 36. 2-Propenal, 3-(2-turanyl) 20.041 1582 0.26	19.	Tridecane	15.490	1299	0.32
21. Dodeone, 4,6-dimethyl 16.516 1325 0.35 22. 2,3 Dihydro-benzoturan 16.955 1368 0.55 23. Ethyl (2: 42)-nona - 2,4-diencate 17.154 1376 0.12 24. Dodecane, 2,6,10-trimethyl 17.888 1382 2.88 25. 1-Tetradecene 18.254 1388 0.82 26. Isoeugenol 18.512 1429 0.27 27. α-Curcumene 18.650 1472 0.21 28. Dihydroactinidiolide 18.675 1479 0.16 29. α-Morphemes 19.101 1485 0.35 30. (+)-Eremophilene 19.235 1486 0.29 31. Dimethyl 3,4-pyridinedicarboxylate 19.288 1502 0.21 32. (+)-Eremophilene 19.285 1534 0.16 33. Homovanillyl alcohol 19.455 1534 0.16 34. Nerolidol 19.604 1548 1.04 35. 3.4-Dihydroxybenzoic acid 19.821 157 0.37 <tr< td=""><td>20.</td><td>Neoisopulegol</td><td>16.277</td><td>1309</td><td>1.62</td></tr<>	20.	Neoisopulegol	16.277	1309	1.62
22. 2,3-Dihydro-benzofuran 16.955 1368 0.55 23. Ethyl (2E,42)-non-2,4-dienoate 17.154 1376 0.12 24. Dodecane, 2,6,10-trimethyl 17.154 1382 2.88 25. 1-Tetradecene 18.254 1388 0.82 26. Isoeugenol 18.512 1429 0.27 27. a-Curcumene 18.550 1479 0.16 28. Dihydroactinidiolide 18.675 1479 0.16 29. a-Morphemes 19.101 1485 0.35 30. (-)-Eremophilene 19.235 1486 0.29 31. Dimethyl 3,4-pyridinedicarboxylate 19.353 1503 0.56 33. Homovanilyl alcohol 19.645 1548 1.04 35. 3,4-Dihydroxybenzoic acid 19.821 1557 0.37 36. 2,4-Propenal,3-(2-furanyl) 20.016 1619 0.29 37. Isosgathulenol 20.768 1633 2.33 34. Nerolido 20.160 1613 3.49	21.	Dodecane, 4,6-dimethyl	16.516	1325	0.35
23. Ethyl (2E, 42)-nona-2, 4-dienoate 17, 154 1376 0.12 24. Dodecane, 2, 6, 10-trimethyl 17, 888 1382 2.88 25. 1-Tetradecene 18, 254 1388 0.82 26. Isceugenol 18, 12 1429 0.27 27. α-Curcumene 18, 590 1472 0.21 28. Dihydroactinidiolide 18, 675 1479 0.16 29. α-Morphemes 19, 101 1485 0.35 30. (+)-Eremophilene 19, 235 1486 0.29 31. Dimethyl 3, 4-pyridinedicarboxylate 19, 353 1503 0.56 32. (+)-Eremophilene 19, 353 1503 0.66 33. Homovanillyl alcohol 19, 455 1534 0.16 34. Nerolidol 19, 604 1548 1.04 35. 3, 4-Dihydroxybenzoic acid 19, 821 1557 0.37 36. 2-Propenal, 3-(2-furanyl) 20, 041 1582 0.26 37. Isospathulenol 20, 768 1673 5.49	22.	2,3-Dihydro-benzofuran	16.955	1368	0.55
24. Dodecane, 2,6,10-trimethyl 17.888 1382 2.88 25. 1-Tetradecene 18.254 1388 0.82 26. Isoeugenol 18.512 1429 0.27 27. a-Curcumene 18.590 1472 0.21 28. Dihydroactinidolide 18.675 1479 0.16 29. a-Morphemes 19.101 1485 0.35 30. (+)-Eremophilene 19.235 1486 0.29 31. Dimethyl 3.4-pyridinedicarboxylate 19.283 1502 0.21 32. (+)-Eremophilene 19.353 1503 0.56 33. Homovanillyl alcohol 19.455 1534 0.16 34. Nerolidol 19.864 1548 1.04 35. 3.4-Dihydroxybenzoic acid 19.821 1557 0.37 36. 2.Propenal, 3-(2-furanyl) 20.041 1582 0.26 37. Isospathulenol 20.476 1635 12.36 38. Zingiberenol 20.0768 1673 5.49 40.	23.	Ethyl (2E,4Z)-nona-2,4-dienoate	17.154	1376	0.12
25. 1-Tetradecene 18.254 1388 0.82 26. Isoeugenol 18.512 1429 0.27 27. ac-Ourcumene 18.590 1472 0.21 28. Dihydroactinidiolide 18.675 1479 0.16 29. ac-Morphemes 19.101 1465 0.35 30. (+)-Eremophilene 19.235 1486 0.29 31. Dimethyl 3.4-pyridinedicarboxylate 19.288 1502 0.21 32. (+)-Eremophilene 19.353 1503 0.56 33. Homovanillyl alcohol 19.455 1534 0.16 34. Nerolidol 19.821 1557 0.37 36. 2-Propenal, 3-(2-furanyl) 20.041 1582 0.26 37. Isospathulenol 20.768 1673 5.49 40. 4.1ohimachalol 20.768 1673 5.49 41. 9-Octadecene 21.092 1676 0.64 41. 9-Octadecene 21.829 1816 1.51 43. Neophytadiene <td>24.</td> <td>Dodecane, 2,6,10-trimethyl</td> <td>17.888</td> <td>1382</td> <td>2.88</td>	24.	Dodecane, 2,6,10-trimethyl	17.888	1382	2.88
26. Isoeugenol 18.512 1429 0.27 27. α-Curcumene 18.590 1472 0.21 28. Dihydroactinidiolide 18.675 1479 0.16 29. α-Morphemes 19.101 1485 0.35 30. (+)-Eremophilene 19.235 1486 0.29 31. Dimethyl 3.4-pyridinedicarboxylate 19.288 1502 0.21 32. (+)-Eremophilene 19.353 1503 0.56 33. Homovanillyl alcohol 19.604 1548 1.04 34. Nerolidol 19.604 1548 1.04 35. 3.4-Dihydroxybenzoic acid 19.821 1557 0.37 36. 2-Propenal, 3-(2-furanyl) 20.0476 1635 12.36 37. Isospathulenol 20.476 1635 12.36 38. Zingiberenol 20.476 1635 12.36 39. Allohimachalol 20.788 1673 5.49 40. 4-Hydrox-β-ionone 21.692 1676 0.64 41. <	25.	1-Tetradecene	18.254	1388	0.82
27. α-Curcumene 18.590 1472 0.21 28. Dihydroactiniciolide 18.675 1479 0.16 29. α-Morphemes 19.101 1485 0.35 30. (+)-Eremophilene 19.235 1486 0.29 31. Dimethyl 3,4-pyridinedicarboxylate 19.288 1502 0.21 32. (+)-Eremophilene 19.353 1503 0.56 33. Homovanilyl alcohol 19.455 1534 0.16 34. Nerolidol 19.851 1557 0.37 35. 3,4-Dihydroxybenzoic acid 19.821 1557 0.37 36. 2-Propenal, 3-(2-furanyl) 20.041 1582 0.26 37. Isospathulenol 20.476 1635 12.36 38. Zingiberenol 20.476 1635 12.36 39. Allohimachalol 20.768 1673 5.49 40. 4-Hydroxy-β-ionone 21.092 1676 0.64 41. 9-Octadecene 21.606 1803 2.33 42. <	26.	Isoeugenol	18.512	1429	0.27
28. Dihydroactinidiolide 18.675 1479 0.16 29. α-Morphemes 19.101 1465 0.35 30. (+)-Eremophilene 19.235 1486 0.29 31. Dimethyl 3.4-pyridinedicarboxylate 19.288 1502 0.21 32. (+)-Eremophilene 19.353 1503 0.56 33. Homovanillyl alcohol 19.455 1534 0.16 34. Nerolidol 19.604 1548 1.04 35. 3.4-Dihydroxybenzoic acid 19.821 1557 0.37 36. 2-Propenal, 3-(2-furanyl) 20.041 1582 0.26 37. Isospathulenol 20.160 1619 0.29 38. Zingiberenol 20.476 1635 12.36 39. Allohimachalol 20.768 1673 5.49 40. 4-Hydroxy-β-ionen 21.092 1676 0.64 41. 9-Octadecene 21.606 1803 2.33 42.	27.	α-Curcumene	18.590	1472	0.21
29. c-Morphemes 19.101 1485 0.35 30. (+)-Eremophilene 19.235 1486 0.29 31. Dimethyl 3,4-pyridinedicarboxylate 19.288 1502 0.21 32. (+)-Eremophilene 19.353 1503 0.56 33. Homovanillyl alcohol 19.455 1534 0.16 34. Nerolidol 19.604 1548 1.04 35. 3,4-Dihydroxybenzoic acid 19.821 1557 0.37 36. 2-Propenal, 3-(2-furanyl) 20.041 1582 0.26 37. Isospathulenol 20.476 1635 12.36 38. Zingiberenol 20.476 1635 12.36 39. Allohimachalol 20.768 1673 5.49 40. 4-Hydroxy-Fjeinone 21.606 1803 2.33 41. 9-Octadecene 21.606 1803 2.33 42. Phytane 21.829 1816 1.51 43. Neophytadiene 22.091 1827 21.80 44. 6,10,14	28.	Dihvdroactinidiolide	18.675	1479	0.16
30. (+)-Eremophilene 19.235 1486 0.29 31. Dimethyl 3,4-pyridinedicarboxylate 19.288 1502 0.21 32. (+)-Eremophilene 19.353 1503 0.56 33. Homovanillyl alcohol 19.654 1534 0.16 34. Nerolidol 19.604 1548 1.04 35. 3,4-Dihydroxybenzoic acid 19.821 1557 0.37 36. 2-Propenal, 3-(2-furanyl) 20.041 1582 0.26 37. Isospathulenol 20.476 1635 12.36 38. Zingiberenol 20.476 1635 12.36 39. Allohimachalol 20.768 1673 5.49 40. 4-Hydroxy-β-ionone 21.092 1676 0.64 41. 9-Octadecene 21.606 1803 2.33 42. Phytane 21.829 1816 1.51 43. Neophytadiene 22.091 1827 21.80 44. <td< td=""><td>29.</td><td>α-Morphemes</td><td>19.101</td><td>1485</td><td>0.35</td></td<>	29.	α-Morphemes	19.101	1485	0.35
1 Dimethyl 3,4-pyridinedicarboxylate 19.288 1502 0.21 31. Dimethyl 3,4-pyridinedicarboxylate 19.353 1503 0.56 32. (+)-Eremophilene 19.353 1503 0.56 33. Homovanillyl alcohol 19.455 1534 0.16 34. Nerolidol 19.604 1548 1.04 35. 3,4-Dihydroxybenzoic acid 19.821 1557 0.37 36. 2-Propenal, 3-(2-furanyl) 20.041 1582 0.26 37. Isospathulenol 20.160 1619 0.29 38. Zingiberenol 20.476 1635 12.36 39. Allohimachalol 20.768 1673 5.49 40. 4-Hydroxy-β-ionone 21.092 1676 0.64 41. 9-Octadecene 21.606 1803 2.33 42. Phytane 22.091 1827 21.80 43. Neophytadiene 22.709 1842 0.99 45. <td>30.</td> <td>(+)-Eremophilene</td> <td>19.235</td> <td>1486</td> <td>0.29</td>	30.	(+)-Eremophilene	19.235	1486	0.29
2. (+)-Eremophilene 19.353 1503 0.56 33. Homovanillyl alcohol 19.455 1534 0.16 34. Nerolidol 19.604 1548 1.04 35. 3,4-Dihydroxybenzoic acid 19.821 1557 0.37 36. 2-Propenal, 3-(2-furanyl) 20.041 1582 0.26 37. Isospathulenol 20.160 1619 0.29 38. Zingiberenol 20.476 1635 12.36 39. Allohimachalol 20.768 1673 5.49 40. 4-Hydroxy-β-ionone 21.092 1676 0.64 41. 9-Octadecene 21.606 1803 2.33 42. Phytane 21.829 1816 1.51 43. Neophytadiene 22.091 1827 21.80 44. 6,10,14-Trimethylpentadecan-2-one 23.563 1900 1.17 45. Nonadecane 23.513 1900 1.17 46. Heptadecane, 2,6,10,15-tetramethyl 23.812 1914 3.61 47.	31.	Dimethyl 3.4-pyridinedicarboxylate	19.288	1502	0.21
Answer Answer Answer Answer 33. Homovanillyi alcohol 19.455 1534 0.16 34. Nerolidol 19.604 1548 1.04 35. 3,4-Dihydroxybenzoic acid 19.821 1557 0.37 36. 2-Propenal, 3-(2-furanyl) 20.041 1582 0.26 37. Isospathulenol 20.160 1619 0.29 38. Zingiberenol 20.768 1635 12.36 39. Allohimachalol 20.768 1673 5.49 40. 4-Hydroxy-β-ionone 21.092 1676 0.64 41. 9-Octadecene 21.606 1803 2.33 42. Phytane 21.829 1816 1.51 43. Neophytadiene 22.091 1827 21.80 44. 6,10,14-Trimethylpentadecan-2-one 23.563 1900 1.17 46. Heptadecane, 2,6,10,15-tetramethyl 23.812 1914 3.61 47. Ethyl 9-he	32.	(+)-Fremophilene	19.353	1503	0.56
34. Nerolidol 19.604 1548 1.04 35. 3,4-Dihydroxybenzoic acid 19.821 1557 0.37 36. 2-Propenal, 3-(2-furanyl) 20.041 1582 0.26 37. Isospathulenol 20.160 1619 0.29 38. Zingiberenol 20.476 1635 12.36 39. Allohimachalol 20.768 1673 5.49 40. 4-Hydroxy-β-ionone 21.092 1676 0.64 41. 9-Octadecene 21.606 1803 2.33 42. Phytane 21.829 1816 1.51 43. Neophytadiene 22.091 1827 21.80 44. 6,10,14-Trimethylpentadecan-2-one 22.709 1842 0.99 45. Nonadecane 23.563 1900 1.17 46. Heptadecane, 2,6,10,15-tetramethyl 23.812 1914 3.61 47. Ethyl 9-hexadecenoate 24.016 1955 0.89 48. Vinyl palmitate 21.37 2000 0.55 0.92	33.	Homovanillyl alcohol	19.455	1534	0.16
35. 3,4-Dihydroxybenzoic acid 19.821 1557 0.37 36. 2-Propenal, 3-(2-furanyl) 20.041 1582 0.26 37. Isospathulenol 20.160 1619 0.29 38. Zingiberenol 20.476 1635 12.36 39. Allohimachalol 20.768 1673 5.49 40. 4-Hydroxy-β-ionone 21.092 1676 0.64 41. 9-Octadecene 21.802 1803 2.33 42. Phytane 22.091 1827 21.80 43. Neophytadiene 22.091 1822 0.99 45. Nonadecane 23.563 1900 1.17 46. Heptadecane, 2,6,10,15-tetramethyl 23.812 1914 3.61 47. Ethyl 9-hexadecenoate 24.016 1955 0.89 48. Vinyl palmitate 24.151 1985 0.92 49. Eicosane 25.260 2086 0.25 50. Tetradecyl bromoacetate 25.873 2103 0.34 52. Et	34.	Nerolidol	19.604	1548	1.04
a.c.b.c.b.c.b.c.36.2-Propenal, 3-(2-furanyl)20.04115820.2637.isospathulenol20.16016190.2938.Zingiberenol20.476163512.3639.Allohimachalol20.76816735.4940.4-Hydroxy-β-ionone21.09216760.6441.9-Octadecene21.60618032.3342.Phytane21.82918161.5143.Neophytadiene22.091182721.8044.6,10,14-Trimethylpentadecan-2-one23.56319001.1746.Heptadecane, 2,6,10,15-tetramethyl23.81219143.6147.Ethyl 9-hexadecenoate24.01619550.8948.Vinyl palmitate25.13720000.5550.Tetradecyl bromoacetate25.26020860.2551.Methyl oleate25.87321030.3452.Ethyl enetocate26.31521080.2053.Z-Phytol26.59121140.2054.Ethyl oleate26.59121140.20	35.	3.4-Dihydroxybenzoic acid	19.821	1557	0.37
37.Isospathulenol20.16016190.2938.Zingiberenol20.476163512.3639.Allohimachalol20.76816735.4940.4-Hydroxy-β-ionone21.09216760.6441.9-Octadecene21.60618032.3342.Phytane21.82918161.5143.Neophytadiene22.091182721.8044.6,10,14-Trimethylpentadecan-2-one22.70918420.9945.Nonadecane23.56319001.1746.Heptadecane, 2,6,10,15-tetramethyl23.81219143.6147.Ethyl 9-hexadecenoate24.01619550.8948.Vinyl palmitate24.15119850.9249.Eicosane25.26020860.2550.Tetradecyl bromoacetate25.26020860.2551.Methyl oleate25.87321030.3452.Ethylene dibenzoate26.31521080.2053.Z-Phytol26.59121140.2055.Ethyl oleate28.49021710.91	36.	2-Propenal, 3-(2-furanvl)	20.041	1582	0.26
Allohimachalo20.476163512.3638.Zingiberenol20.476163512.3639.Allohimachalol20.76816735.4940.4-Hydroxy-β-ionone21.09216760.6441.9-Octadecene21.60618032.3342.Phytane21.82918161.5143.Neophytadiene22.091182721.8044.6,10,14-Trimethylpentadecan-2-one22.70918420.9945.Nonadecane23.56319001.1746.Heptadecane, 2,6,10,15-tetramethyl23.81219143.6147.Ethyl 9-hexadecenoate24.01619550.8948.Vinyl palmitate24.15119850.9249.Eicosane25.13720000.5550.Tetradecyl bromoacetate25.26020860.2551.Methyl oleate25.87321030.3452.Ethylene dibenzoate26.31521080.2053.Z-Phytol26.59121140.2054.Ethyl oleate28.49021710.91	37.	Isospathulenol	20.160	1619	0.29
39.Allohimachalol20.76816735.4940.4-Hydroxy-β-ionone21.09216760.6441.9-Octadecene21.60618032.3342.Phytane21.82918161.5143.Neophytadiene22.091182721.8044.6,10,14-Trimethylpentadecan-2-one22.70918420.9945.Nonadecane23.56319001.1746.Heptadecane, 2,6,10,15-tetramethyl23.81219143.6147.Ethyl 9-hexadecenoate24.01619550.8948.Vinyl palmitate24.15119850.9249.Eicosane25.26020860.2550.Tetradecyl bromoacetate25.87321030.3452.Ethyl oleate26.31521080.2053.Z-Phytol26.59121140.9155.Ethyl oleate28.49021710.91	38.	Zingiberenol	20.476	1635	12.36
40.4-Hydroxy-β-ionone21.09216760.6441.9-Octadecene21.00618032.3342.Phytane21.82918161.5143.Neophytadiene22.091182721.8044.6,10,14-Trimethylpentadecan-2-one22.70918420.9945.Nonadecane23.56319001.1746.Heptadecane, 2,6,10,15-tetramethyl23.81219143.6147.Ethyl 9-hexadecenoate24.01619550.8948.Vinyl palmitate24.15119850.9249.Eicosane25.26020860.2550.Tetradecyl bromoacetate25.87321030.3452.Ethyl oleate26.31521080.2053.Z-Phytol26.59121140.2054.Ethyl oleate28.49021710.91	39.	Allohimachalol	20.768	1673	5.49
41.9-Octadecene21.60618032.3342.Phytane21.82918161.5143.Neophytadiene22.091182721.8044.6,10,14-Trimethylpentadecan-2-one22.70918420.9945.Nonadecane23.56319001.1746.Heptadecane, 2,6,10,15-tetramethyl23.81219143.6147.Ethyl 9-hexadecenoate24.01619550.8948.Vinyl palmitate24.15119850.9249.Eicosane25.13720000.5550.Tetradecyl bromoacetate25.26020860.2551.Methyl oleate25.87321030.3452.Ethylene dibenzoate26.31521080.2053.Z-Phytol26.59121140.2054.Ethyl oleate28.49021710.91	40.	4-Hvdroxy-β-ionone	21.092	1676	0.64
42.Phytane21.82918161.5143.Neophytadiene22.091182721.8044.6,10,14-Trimethylpentadecan-2-one22.70918420.9945.Nonadecane23.56319001.1746.Heptadecane, 2,6,10,15-tetramethyl23.81219143.6147.Ethyl 9-hexadecenoate24.01619550.8948.Vinyl palmitate24.15119850.9249.Eicosane25.13720000.5550.Tetradecyl bromoacetate25.26020860.2551.Methyl oleate25.87321030.3452.Ethylene dibenzoate26.31521080.2053.Z-Phytol26.59121140.2054.Ethyl oleate28.49021710.9155.Ethyl oleate20.09821810.62	41.	9-Octadecene	21.606	1803	2.33
43. Neophytadiene 22.091 1827 21.80 44. 6,10,14-Trimethylpentadecan-2-one 22.709 1842 0.99 45. Nonadecane 23.563 1900 1.17 46. Heptadecane, 2,6,10,15-tetramethyl 23.812 1914 3.61 47. Ethyl 9-hexadecenoate 24.016 1955 0.89 48. Vinyl palmitate 24.151 1985 0.92 49. Eicosane 25.137 2000 0.55 50. Tetradecyl bromoacetate 25.260 2086 0.25 51. Methyl oleate 25.873 2103 0.34 52. Ethylene dibenzoate 26.315 2108 0.20 53. Z-Phytol 26.591 2114 0.20 54. Ethyl oleate 28.490 2171 0.91 55. Ethyl stearate 30.098 2181 0.62	42.	Phytane	21.829	1816	1.51
44.6,10,14-Trimethylpentadecan-2-one22.70918420.9945.Nonadecane23.56319001.1746.Heptadecane, 2,6,10,15-tetramethyl23.81219143.6147.Ethyl 9-hexadecenoate24.01619550.8948.Vinyl palmitate24.15119850.9249.Eicosane25.13720000.5550.Tetradecyl bromoacetate25.26020860.2551.Methyl oleate25.87321030.3452.Ethylene dibenzoate26.31521080.2053.Z-Phytol26.59121140.2054.Ethyl oleate28.49021710.91	43.	Neophytadiene	22.091	1827	21.80
45. Nonadecane 23.563 1900 1.17 46. Heptadecane, 2,6,10,15-tetramethyl 23.812 1914 3.61 47. Ethyl 9-hexadecenoate 24.016 1955 0.89 48. Vinyl palmitate 24.151 1985 0.92 49. Eicosane 25.137 2000 0.55 50. Tetradecyl bromoacetate 25.260 2086 0.25 51. Methyl oleate 25.873 2103 0.34 52. Ethylene dibenzoate 26.591 2114 0.20 53. Z-Phytol 26.591 2114 0.91 54. Ethyl oleate 28.490 2171 0.91	44.	6.10.14-Trimethylpentadecan-2-one	22,709	1842	0.99
46. Heptadecane, 2,6,10,15-tetramethyl 23,812 1914 3.61 47. Ethyl 9-hexadecenoate 24,016 1955 0.89 48. Vinyl palmitate 24,151 1985 0.92 49. Eicosane 25,137 2000 0.55 50. Tetradecyl bromoacetate 25,260 2086 0.25 51. Methyl oleate 25,873 2103 0.34 52. Ethylene dibenzoate 26,315 2108 0.20 53. Z-Phytol 26,591 2114 0.20 54. Ethyl oleate 28,490 2171 0.91	45	Nonadecane	23 563	1900	1 17
47.Ethyl 9-hexadecenoate24.01619550.8948.Vinyl palmitate24.15119850.9249.Eicosane25.13720000.5550.Tetradecyl bromoacetate25.26020860.2551.Methyl oleate25.87321030.3452.Ethylene dibenzoate26.59121140.2053.Z-Phytol26.59121140.2054.Ethyl oleate30.09821810.62	46	Hentadecane 2.6.10.15-tetramethyl	23 812	1914	3.61
48. Vinyl palmitate 24.151 1985 0.92 49. Eicosane 25.137 2000 0.55 50. Tetradecyl bromoacetate 25.260 2086 0.25 51. Methyl oleate 25.873 2103 0.34 52. Ethylene dibenzoate 26.591 2114 0.20 53. Z-Phytol 26.591 2114 0.20 54. Ethyl oleate 30.098 2181 0.62	47	Ethyl 9-bexadecenoate	24 016	1955	0.89
49. Eicosane 25.137 2000 0.55 50. Tetradecyl bromoacetate 25.260 2086 0.25 51. Methyl oleate 25.873 2103 0.34 52. Ethylene dibenzoate 26.591 2114 0.20 53. Z-Phytol 26.591 2114 0.20 54. Ethyl oleate 30.098 2181 0.62	48	Vinyl palmitate	24 151	1985	0.92
50. Tetradecyl bromoacetate 25.260 2086 0.25 51. Methyl oleate 25.873 2103 0.34 52. Ethylene dibenzoate 26.315 2108 0.20 53. Z-Phytol 26.591 2114 0.20 54. Ethyl oleate 28.490 2171 0.91	49	Ficosane	25 137	2000	0.55
51. Methyl oleate 25.873 2103 0.34 52. Ethylene dibenzoate 26.315 2108 0.20 53. Z-Phytol 26.591 2114 0.20 54. Ethyl oleate 28.490 2171 0.91 55. Ethyl stearate 30.098 2181 0.62	50	Tetradecyl bromoacetate	25.260	2086	0.00
52. Ethylene dibenzoate 26.315 2108 0.20 53. Z-Phytol 26.591 2114 0.20 54. Ethyl oleate 28.490 2171 0.91 55. Ethyl stearate 30.098 2181 0.63	51	Methyl oleate	25.873	2103	0.34
53. Z-Phytol 26.591 2114 0.20 54. Ethyl oleate 28.490 2171 0.91 55. Ethyl stearate 30.098 2181 0.62	52	Ethylene dibenzoate	26 315	2108	0.04
54. Ethyl oleate 28.490 2114 0.20 55. Ethyl stearate 30.098 2181 0.63	53	Z-Phytol	26 591	2114	0.20
55 Ethyl stearate 30 008 2181 0.62	54	Ethyl oleate	28.490	2174	0.20
	55	Ethyl stearate	30,098	2181	0.63

(Contd...)

Table 1. (Commund)							
S. No.	Name of chemical compound	RT	KI	% Composition			
56.	2-Methyltetracosane	32.341	2460	0.11			
57.	(8)-Gingerdione	32.864	2560	1.12			
58.	15-Tetracosenoic acid, methyl ester	33.013	2680	0.18			
59.	Dioctyl phthalate	34.623	2682	1.21			
60.	Glyceryl monooleate	35.081	2714	1.27			
61.	p-Methoxybenzoic acid, pentadecyl ester	35.820	2786	1.34			
62.	Supraene	36.504	2817	1.15			
63.	Vitamin E	36.840	3100	0.36			

where, KI: Kovats index, and RT: retention time

Table 1. (Continued)

(Table 1). Neophytadiene (21.80%), zingiberene (12.36%), allohimachalol (5.49%), heptadecane, 2,6,10,15-tetramethyl (3.61%), dodecane, 2,6,10-trimethyl (2.88%), 9-octadecene (2.33%), and propanoic acid, ethyl ester (2.16%) was identified as major chemical compounds in ethyl acetate extract of O. europaea leaves. The ethyl acetate extract of O. europaea also contains neoisopulegol (1.62%), p-methoxybenzoic acid, pentadecyl ester (1.34%), ethane, 1,1-diethoxy (1.24%), glyceryl monooleate (1.27%), dioctyl phthalate (1.21%), phytane (1.51%), nonadecane (1.17%), supraene (1.15%), (8)-gingerdione (1.12%), and nerolidol (1.04%) as minor chemical compounds. Chemical compounds less than 1% are also presented in Table 1. The main focus of this analysis to characterize fatty acid components present in leaves of O. europaea. Several studies were previously published about the chemical composition of O. europaea oil (Ahamad et al., 2020). The present study leads identification of phytochemicals present in leaves by GC-MS analysis, and the main fatty components identified are neophytadiene (21.80%), zingiberenol (12.36%), and allohimachalol (5.49%).

Anticancer activity of *O. europaea MTT assay*

An MTT assay was performed to measure the cytotoxicity of O. europaea ethyl acetate extract against A549 (Human lung cancer cells) cell lines. The results of the MTT assay are shown in Table 2 and Figs. 1 & 2. O. europaea ethyl acetate extract produces a time (24 hrs) and dose (0.5- $500 \,\mu g/mL$) dependent inhibition of cell proliferation against A549 cell lines. The cell viability of A549 cell lines after 24 hrs treatment with O. europaea ethyl acetate extract ranged from 97.96±3.44 to 18.95±2.14 % for a concentration range of $0.5-500\,\mu g/mL$, respectively (Table 2). At 24 hrs, the IC₅₀ value of *O. europaea* ethyl acetate extract was $21.91\pm0.18\,\mu$ g/mL for A549 cell lines. MTT is a water-soluble substance that the live cell can take up. For calorimetric measurement, a waterinsoluble blue formazan that is the reduction product of MTT must be dissolved. The untreated A549 cells kept

Table 2: Cytotoxicity (% cell viability) produced by ethyl acetate extract of *O. europaea* leaves

Conc. (µg/mL)	Cell viability (%)
Control	100
0.5	97.96±3.44
1	76.75±3.27
5	71.45±0.99
10	64.61±0.86
50	59.91±2.35
100	52.21±2.95
200	43.86±3.82
300	35.36±4.94
400	25.70±3.85
500	18.95±2.14
IC ₅₀ value (µg/mL)	21.91±0.18

Fig 1. MTT assay for measurement of cytotoxicity (% cell viability) produced by ethyl acetate extract of *O. europaea* leaves (Data were presented as mean of triplicate determinations ± SD)

their original morphology and close contact with one another even when the incubation time was extended to 24 hours, as seen in Fig. 2. In the treatment groups the A549 cells, on the other hand, began to resemble their pre-treatment form 24 hours later. The elongated spindleshaped morphology of the A549 cell lines was no longer present. Suspension cells (dead cells) were found when the incubation was continued for 48 hours, and more suspension cells were seen at 48 hours (Fig. 2 b-g). In order to evaluate the anticancer potential of medicinal Najibullah, et al.

Fig 2. Cell cytotoxicity produced by ethyl acetate extract of *O. europaea* against Human lung cancer A549 cell lines. where, figure (a): Control cells; and figure b to g: *O. europaea* ethyl acetate extract (b: 500 µg/mL, c: 300 µg/mL, 100 µg/mL, 50 µg/mL, 10 µg/mL, and 0.5 µg/mL).

plants, cell cytotoxicity by MTT test has frequently been performed (Ahamad et al., 2019).

EB/AO double staining

The results of EB/AO double staining analysis were presented in Table 3 and Figs. 3a, b. The treatment with olive extract (21.91 µg/mL) caused a significant reduction of the number of viable cells in EO/AO double staining analysis lung cancer (A549) cell lines in early and late apoptotic cells (Fig. 3b), and there was no significant apoptosis detected in the negative control group (Fig. 3a). Besides that, several cells had apoptotic signs such as plasma membrane blabbing. The number of red-stained cells (necrotic cells) did not raise. This shows that the majority of the cells were not necrotic and that cell death was predominantly caused by apoptosis. The results of the early apoptotic (EA), late apoptotic (LA), and total apoptotic (total necrosis) cell populations were expressed as percentages of apoptosis and presented in Fig. 3b and Fig. 4.

A wide range of natural compounds have been discovered to have the ability to cause apoptosis in human tumor cells (Mathur et al., 2009; Shiezadeh et al., 2013). The substances are made up of different chemical entities, and many of them can be found in medicinal plants as well as fruits and vegetables that are widely ingested by humans. So, it is important to screen apoptotic inducers from plants, either

Fig 3. (a) Negative control group (normal cells): the circular nucleus uniformly distributed in the center of the cell. (b) Experimental groups treated with Olive extract (21.91 μ g/mL): (1) Early apoptotic cells: nucleus showed yellow-green fluorescence by acridine orange (AO) staining and concentrated into a crescent or granular that located in 1 side of cells. (2) Late apoptotic cells: the nucleus of cell showed orange fluorescence by EB staining and gathered in concentration and located in bias. (3) Necrotic cells: The necrosis cells' volume was increased, showing uneven orange-red fluorescence.

in the form of crude extract or as components, isolated from (Taraphdar et al., 2001). There are a variety of *in-vitro* methods for detecting apoptotic cell death. The use of a fluorescent microscope in apoptosis detection methods offers several notable benefits. For detecting apoptosis, double staining approaches (EB/AO) produce consistent and repeatable results. As a result, differentiating clearly between apoptotic cell subpopulations (early or late apoptotic cells) (Baskic et al., 2006). The most common number of apoptotic cells found in 21.91 μ g/mL of olive extract-treated cells and late apoptotic cells were considerably elevated in the EB/AO staining assay.

Table 3: Comparison	of the number	of early, late	e apoptotic and	I necrotic index
---------------------	---------------	----------------	-----------------	------------------

Control	Early apopt	Early apoptosis index (%)		Late apoptosis index (%)		Necrosis index (%)	
	0	1	3	3	0	0	
Treated with Olive extract	11	15	76	82	3	4	
Mean values	13:	13=26/2		79=158/2		3.5=7/2	

where, data is presented in mean±SD; Early apoptotic cells: No. of cells which appeared yellow-green fluorescence/100 cells, Late apoptotic cells: No. of cells which appeared orange nuclear fluorescence/100 cells, Necrotic cells: No. of cells which appeared orange-red fluorescence/100 cells

Fig 4. Treatment with Olive extract (21.91 μ g/mL) in lung cancer cell lines in Dual EB/AO staining shows significant apoptosis in early and late apoptotic cells; and necrotic cells compared to control cells.

CONCLUSION

O. europaea is an important component of Mediterranean diets and it has several pharmacological actions such as antidiabetic, cardioprotective, and neuroprotective, etc. In the present study chemical constituents of ethyl acetate extract of *O. europaea* leaves were determined by GC-MS. The GC-MS analysis shows the presence of neophytadiene, zingiberenol, and allohimachalol as major chemical constituents. *O. europaea* produces dose-dependent inhibition of human lung cancer cell lines. The results of EB/AO double staining show significant apoptosis produced by *O. europaea* extract. The study outcome shows that *O. europaea* extracts significantly inhibited cell proliferation and apoptosis in human lung cancer (A549) cell lines. The present also study expands knowledge about the chemical composition of *O. europaea* leaf extract.

ACKNOWLEDGMENT

The authors are grateful for the financial support provided by King Khalid University, Abha, KSA (RGP.1/339/42). The authors also extend sincere thanks to Trichy Research Institute of Biotechnology Ltd. Pvt., Trichy, Tamil Nadu, India for providing research facilities.

CONFLICT OF INTEREST

The authors declared no conflicts of interest with this research work.

Authors contribution

SNMN: laboratory work and writing; JA: project design, laboratory work, data analysis, and proofreading; SS: editing and literature; and SU: data analysis and editing.

REFERENCES

- Abaza, L., A. Taamalli, H. Nsir and M. Zarrouk. 2015. Olive tree (Olea europea L.) leaves: Importance and advances in the analysis of phenolic compounds. Antioxidants (Basel). 4: 682-698.
- Adams, R. P. 2007. Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy. 4th ed. Allured Publishing Corporation, Carol Stream, Illinois.
- Ahamad, J., I. Toufeeq, M. A. Khan, M. S. M. Ameen, E. T. Anwer, S. Uthirapathy, S. R. Mir and J. Ahmad. 2019. Oleuropein: A natural antioxidant molecule in the treatment of metabolic syndrome. Phytother. Res. 33: 3112-3128.
- Ahamad, J., S. Uthirapathy, M. S. M. Ameen and E. T. Anwer. 2019. Essential oil composition and antidiabetic, anticancer activity of *Rosmarinus officinalis* L. leaves from Erbil (Iraq). J. Essent. Oil Bear. Plants. 22: 1544-1553.
- Ahamad, J., S. Uthirapathy, M. S. M. Ameen, E. T. Anwer and S. R. Mir. 2020. Chemical composition and *in-vitro* antidiabetic effects of *Olea europaea* Linn. (Olive). Curr. Bio. Comp. 16: 1157-1163.
- Al-Azzawie, H. F. and M. S. Alhamdani. 2006. Hypoglycemic and antioxidant effect of oleuropein in alloxan-diabetic rabbits. Life Sci. 78: 1371-1377.
- Ali, M. 2001. Techniques in Terpenoid Identification. Birla Publication, Delhi, India, p. 4-51.
- Andreadou, I., F. Sigalam, E. K. Iliodromitis, P. Maria, C. Sigalas, N. Aligiannis, P. Savvari, V. Gorgoulis, E. Papalabros and D. T. Kremastinos. 2007. Acute doxorubicin cardiotoxicity is successfully treated with the phytochemical oleuropein through suppression of oxidative and nitrosative stress. J. Mol. Cell Cardiol. 42: 549-558.
- Antoniou, C. and J. Hull. 2021. The anti-cancer effect of Olea europaea L. products: A review. Curr. Nutr. Rep. 10: 99-124.
- Antoniou, C. and J. Hull. 2021. The anti-cancer effect of Olea europaea I. products: A review. Curr. Nutr. Rep. 10: 99-124.
- Barbaro, B., G. Toietta, R. Maggio, M. Arciello, M. Tarocchi, A. Galli and C. Balsano. 2014. Effects of the olive-derived polyphenol oleuropein on human health. Int. J. Mol. Sci. 15: 18508-18524.
- Baskic, D., S. Popovic, P. Ristic and N. N. Arsenijevic. 2006. Analysis of cycloheximide-induced apoptosis in human leukocytes: Fluorescence microscopy using annexin V/propidium iodide versus acridin orange/ethidium bromide. Cell. Biol. Int. 30: 924-932.
- Castejón, M. L., T. Montoya, C. Alarcón-de-la-Lastra and M. Sánchez-Hidalgo. 2020. Potential protective role exerted by secoiridoids from *Olea europaea* L. in cancer, cardiovascular, neurodegenerative, aging-related, and immunoinflammatory

diseases. Antioxidants (Basel). 9: 149.

- Castejón, M. L., T. Montoya, C. Alarcón-de-la-Lastra and M. Sánchez-Hidalgo. 2020. Potential protective role exerted by secoiridoids from *Olea europaea* I. in cancer, cardiovascular, neurodegenerative, aging-related, and immunoinflammatory diseases. Antioxidants (Basel). 9: 149.
- Collins, L. G., C. Haines, R. Perkel and R. E. Enck. 2007. Lung cancer: Diagnosis and management. Am. Fam. Physician. 75: 56-63.
- De Marino, S., C. Festa, F. Zollo, A. Nini, L. Antenucci, G. Raimo and M. Iorizzi. 2014. Antioxidant activity and chemical components as potential anticancer agents in the olive leaf (*Olea europaea* L. cv Leccino.) decoction. Anticancer Agents Med. Chem. 14: 1376-1385.
- Gallazzi, M., M. Festa, P. Corradino, C. Sansone, A. Albini and D. M. Noonan. 2020. An extract of olive mill wastewater downregulates growth, adhesion and invasion pathways in lung cancer cells: Involvement of CXCR4. Nutrients. 12: 903.
- Gezici, S. and N. Şekeroğlu. 2019. Current perspectives in the application of medicinal plants against cancer: Novel therapeutic agents. Anticancer Agents Med. Chem. 19: 101-111.
- Hadrich, F., M. Garcia, A. Maalej, M. Moldes, H. Isoda, B. Feve and S. Sayadi. 2016. Oleuropein activated AMPK and induced insulin sensitivity in C2C12 muscle cells. Life Sci. 151: 167-173.
- Hernández-Corroto, E., M. L. Marina and M. C. García. 2018. Multiple protective effect of peptides released from *Olea europaea* and *Prunus persica* seeds against oxidative damage and cancer cell proliferation. Food Res. Int. 106: 458-467.
- Imran, M., M. Nadeem, S. A. Gilani, S. Khan, M. W. Sajid and R. M. Amir. 2018. Antitumor perspectives of oleuropein and its metabolite hydroxytyrosol: Recent updates. J. Food Sci. 83: 1781-1791.
- Janahmadi, Z., A. A. Nekooeian, A. R. Moaref and M. Emamghoreishi. 2015. Oleuropein offers cardioprotection in rats with acute myocardial infarction. Cardiovasc. Toxicol. 15: 61-86.
- Jones, G. S. and D. R. Baldwin. 2018. Recent advances in the management of lung cancer. Clin. Med. (Lond). 18: S41-S46.
- Kaniewski, D., E. Van Campo, T. Boiy, J. F. Terral, B. Khadari and

G. Besnard. 2012. Primary domestication and early uses of the emblematic olive tree: Palaeobotanical, historical and molecular evidence from the Middle East. Biol. Rev. Camb. Philos. Soc. 87: 885-899.

- Kaskoos, R. A., S. Amin, M. Ali and S. R. Mir. 2009. Chemical composition of fixed oil of *Olea europaea* drupes from Iraq. Res. J. Med. Plant. 3: 146-150.
- Liu, K., P. C. Liu, R. Liu, X. Wu. 2015. Dual AO/EB staining to detect apoptosis in osteosarcoma cells compared with flow cytometry. Med. Sci. Monit. Basic Res. 21: 15-20.
- Majumder, D., R. Debnath, P. Nath, K. V. L. Kumar, M. Debnath, P. Tribedi and D. Maiti. 2021. Bromelain and *Olea europaea* (L.) leaf extract mediated alleviation of benzo (a) pyrene induced lung cancer through Nrf2 and NFκB pathway. Environ. Sci. Pollut. Res. 28: 47306-47326.
- Marquez, C. M. D., J. G. Garcia, J. G. Antonio, S. D. Jacinto and M. C. Velarde. 2020. *Alangium longiflorum* Merr. leaf extract induces apoptosis in A549 lung cancer cells with minimal NFκB transcriptional activation. Asian Pac. J. Cancer Prev. 21: 2453-2461.
- Mathu, R., S. Gupta, S. Mathur and T. Velpandian. 2009. Anti-tumor studies with extract of *Calotropis procera* Ait. root employing Hep2 cells and their possible mechanism of action. Indian J. Exp. Biol. 47: 343-348.
- Mootoosamy, A. and M. F. Mahomoodally. 2014. Ethnomedicinal application of natives remedies used against diabetes and related complications in Mauritius. J. Ethnopharmacol. 151: 413-444.
- Qais, F. A., S. Y. Alomar, M. A. Imran and M. A. Hashmi. 2022. *In-Silico* analysis of phytocompounds of *Olea europaea* as potential anticancer agents to target PKM2 protein. Molecules. 27: 5793.
- Shiezadeh, F., S. Mousavi, M. Amiri, M. Iranshahi, Z. Tayarani-Najaran and G. Karimi. 2013. Cytotoxic and apoptotic potential of *Rheum turkestanicum* Janisch root extract on human cancer and normal cells. Iran. J. Pharm. Res. 12: 811-819.
- Taraphdar, A., M. Roy and R. Bhattacharya. 2001. Natural products as inducers of apoptosis implication for cancer therapy and prevention. Curr. Sci. 80: 1388-1396.