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INTRODUCTION

Rice (Oryza sativa L.) is the one of  the leading cereal 
food grain crop in the world and supplying two-thirds of  
total calories for more than 3 billion people and one-third 
of  daily calories for roughly 1.5 billion people in Latin 
America and Africa (Anon., 2018). Rice is linked with life 
for more than half  of  the human race and has influenced 
the cultures, cuisines, and economics of  hundreds of  
millions of  people worldwide. Rice is abundant in carbs 
(70–80%), proteins (7–10%), lipids and fats (1%) (Yang 
et al., 2019), key micronutrients and vitamins (thiamin, 
niacin, riboflavin, pantothenic acid and vitamin B6), and 
minerals (calcium, magnesium, zinc, iron, phosphorus, 
potassium, and manganese) (USDA, 1950). Rice might be 
genetically modified to include more essential nutrients 
and bioactive chemicals, improving human health and 

preventing chronic diseases. Rice is a great target cereal 
crop for hidden hunger because it can be bio-fortified 
to increase nutritional density, which is sustainable for 
individuals who eat rice and have limited access to other 
meals. Over 40 crores children (below five years) die 
each year as a result of  zinc deficiency, which affects 
about 18% of  the global population (Hefferon, 2019). 
These are the consequences of  Zn’s different actions. An 
adequate quantity of  Zn (together with iron) is essential to 
regulate Fe absorption in the intestines and to cure IDA 
(Graham et al., 2012). Human growth, immunological, 
reproductive, neurobehavioral, and sensory functioning 
all need Zn. As the only element involved in all six enzyme 
groups, Zn is required for activating over 300 proteins 
and enzymes (such as zinc finger proteins) (Levenson 
and Morris, 2011). Rice may help fight hidden hunger 
by increasing its zinc content via traditional breeding or 

Rice is the staple food of almost half of the world’s population, impacting nutrition especially in children, pregnant women, and nursing 
mothers. Because the traits were quantitatively inherited, they are affected by changes in location and year. A RBD with three replications 
was used to identify superior and stable high-zinc rice genotypes in Uttar Pradesh, India. Grain zinc content (GZC) is negatively correlated 
with grain yield using genetic association study. There was a significant G × E interaction (GEI) and V16 and V21 for GYP and V9, V2 
and V10 for GZC were identified as stable based on the AMMI model and bi-plot. V11, V5, V21 for grain yield per plant (GYP) and for 
GZC, V14, and V10 are found to be stable and common in all AMMI stability parameters. V6, V13 and V5 for GYP and V10, V8 and V2 
for GZC were identified as stable based on the mean vs. WAASB bi-plot. V21 for GYP and V4 for GZC was the highest yielder and widely 
adaptable based on WAASBY scores. V13 for GYP and V1 for GZC were all-time winners. V13 and V1 have the highest predicted mean 
for GYP and GZC, respectively, based on BLUP. V6, V21and V13 were identified as stable and selected based on the multi-trait stability 
index (MTSI). These selected genotypes selected through BLUP-based stability methods, MTSI, and strength and weakness plots make 
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genetic modification. Conversely, genotype x environment 
interactions (GEI) is a major component in plant sciences 
and therefore, the introduction of  new stable crop 
varieties. According to Dixon and Nukenine (1997) and 
Manimaran and Prakash (2018), individual genotypes 
of  rice cultivars are sensitive to changes in soil, climate 
(rainfall, wind, light, humidity, temperature, etc.), and 
biotic factors. When evaluating adaptation, the GEI must 
be taken into account. It takes a lot of  study to increase 
production because yield is a complex variable influenced 
by many genes and environmental factors (Nyadanu 
and Dikera, 2014). In a number of  circumstances, using 
stable cultivars of  rice may increase yield and mineral 
content. Plant breeders would benefit from discovering 
the consistently highest yielding crop types and zinc-rich 
rice varieties for a particular environment because yield 
estimations based just on genotype (G) and environment 
(E) impacts are low.

The two methods for studying GEI are regression analysis 
(Finlay and Wilkinson, 1963) and the linear regression 
model (Eberhart and Russell, 1966). According to 
Eberhart and Russell (1966) and Perkins and Jinks (1968), 
the regression model has been widely employed because 
of  its range of  applications and simplicity. Since linear 
regression uses E means, which are often poor predictors 
of  the environment, the fitted lines often only show a small 
part of  the whole GEI (Zobel et al., 1988). The principal 
component analysis (PCA) is a multiplicative method that 
lacks sources of  variation for additive G or E major effects 
and fails to appropriately evaluate interactions. ANOVA 
(analysis of  variance) is a model that quickly divides the 
entire sum of  squares into the environment main effect, 
genotype main effect, and the GEI effect; therefore, it 
is sometimes employed even when there is sufficient 
knowledge about the structure of  the GEI (Shinde et al., 
2002). A genotype’s stability to environmental or seasonal 
variation may be estimated using GEI effects. AMMI is 
likely the most contemporary and widely utilised approach 
to GEI analysis to detect stable variations and the overall 
ranking of  crop genotypes across places and seasons. It 
calculates the net GEI effect of  individual crop genotypes 
and divides the GEI into environment-related interaction 
effects (Vijayakumar et al., 2001). So that genotypes with 
higher yield potential may be selected more effectively, 
the AMMI technique combines traditional ANOVA for 
additive effects with PCA for multiplicative structures 
within interactions. In multi-location genotype yield 
investigations, this strategy is preferable (Gauch, 1993). 
The AMMI-mediated research may help choose cultivars, 
especially via mega-environment assessment, which 
determines the most suitable cultivar for each sub-region. 
The results of  the AMMI study are bi-plot graphs that show 

markers from both environments and genotypes (Ebdon 
and Gauch, 2002). This feature allows you to see E and G 
on the same scatter plot, enabling you to make inferences 
about their relationships.

Even though AMMI and GGE bi-plots are the best tools 
for comparing average grain yield and genotype stability, 
they lack precise numerical data. BLUP is a technique for 
computing the simultaneous selection index (SSI), which 
helps choose high-yielding and stable crops simultaneously. 
The WAASB (weighted average of  absolute scores from 
singular value decomposition of  the matrix of  BLUPs) 
is a quantitative stability index based on a linear mixed 
model. It was developed to analyse GEI using bi-plots 
and identify stable genetic variants (Olivoto and Lúcio, 
2020; Olivoto et al., 2019a). The MTSI Index is a selection 
approach that enables simultaneous selection based on 
the performance outcomes of  multiple traits and crop 
stability (Olivoto et al., 2019b). If  the investigation 
comprises many attributes, the MTSI may be determined 
using either average performance or stability alone. This 
score helps breeders identify genotypes that are superior 
in many ways. MTSI measures the distance between an 
ideotype and a genotype using component analysis scores, 
making it excellent for ideotype breeding. Considering the 
above facts, the current study concentrated on the multiple 
environment-based stability analysis for the selection of  
stable high-grain zinc rice by using the AMMI, WAASB, 
BLUP, and MTSI approaches.

MATERIALS AND METHODS

Experimental unit, location and material
Twenty-one high zinc rice genotypes, comprising four 
checks (Swarna, Samba Mahsuri, MTU 1010, and IR 64) 
and one local check (HUR3022), with fourteen yield and 
grain quality attributes, were employed in this investigation 
(Supplementary Table 1). The genotype lines were collected 
from the IRRI South Asia Hub, Hyderabad, India. The 
experiment was conducted during Kharif, 2017 at five 
locations in Uttar Pradesh, India viz., BHU Agriculture 
Research farm I & II, BHIARIPUR, KARSADA, and 
RAMPUR. The description of  each individual environment 
was given in Table 1 and Supplementary Fig. 1.

Experimental design
The experiment followed a completely randomised block 
design with three replications at five locations in irrigated 
ecosystems and medium-upland areas with transplanted 
nursery.  Each location under study had a net plot size 
of  2.4 m × 2.4 m. The seedlings were transplanted with 
the spacing of  15  cm x 20  cm. The trials involved the 
implementation of  need-based recommended cultural 
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practises and plant protection measures throughout the 
entire crop growth cycle.

Soil and weather condition
The soil condition was inceptisol type (Typicustochrept) 
and sandy clay loam texture for all the trials. The weather 
conditions throughout the evaluation period from June to 
November, 2017 nearly normal and favourable for crop 
growth in each trial (Supplementary Fig. 2).

Observations and estimation
In each replication, five competing plants were selected 
randomly in each genotype and observed for all yield 
and related traits. The attributes used to evaluate cultivar 
performance described by Biodiversity International 
(IPGRI and WARDA, 2007) were mentioned in the Table 2. 
Zinc concentration of  grain samples was evaluated by an 
atomic absorption spectrophotometer at 213.86 nm at the 
Indian Institute of  Rice Research, Hyderabad, following 
Sahrawat et al. (2002).

Statistical analysis
Additive multiplicative mean interaction model 
(AMMI)
AMMI analysis was performed using R studio to 
understand the genotype and environment interaction. The 
G×E interaction was evaluated by considering the first two 
PCA. The AMMI model (Gauch, 1988). Total five AMMI 
based stability parameters were computed such as, AMMI 
stability value (ASV) (Purchase et al., 2000); Sums of  the 
absolute value of  the IPC scores (SIPC) (Sneller et al., 
1997); Averages of  the squared eigenvector values (EV) 
(Zobel,1994); Absolute value of  the relative contribution 
of  IPCs to the interaction (Za) (Zali et al., 2012). The lowest 
values of  ASV, SIPC and WAASB indicate the greatest 
stability of  tested genotypes over environments.

Weighted average absolute scores based on BLUP 
(WAASB)
BLUP shows the predicted means for each genotype 
and environment combination. The likelihood ratio 
test was used to determine the significance of  random 
effects (genotype and GxE)(Dempster et al., 1977).The 
calculation of  the weighted average of  absolute scores 
takes into account all IPCA derived from the singular 
value decomposition (SVD) of  the matrix representing 
genotype-environment interaction (GEI) effects. This 
calculation is performed using a linear mixed-effect model, 
as described by Olivoto et al. (2019a). WAASBY index for 
simultaneous selection based on grain yield (Y) and stability 
(WAASB) was obtained by equation suggested by Olivoto 
et al., (2019a).

Multi trait stability index (MTSI)
Simultaneous selection is a method of  selecting multiple 
candidates at the same time and the MTSI was calculated 
by formula given by Olivoto et al., (2019b).

The statistical analyses were conducted using R open-
source software version 4.0.5 and R Studio (Team R, 2019). 
The ‘metan’ package developed by Olivoto and Lúcio 
(2020) was utilised for these analyses. The data visualisation 
utilised various bi-plots and heat maps through the ggplot2 
package (Wickham et al., 2016).

RESULTS

Mean grain yield and Zinc content
Grain yield performance and zinc content of  all the 
genotypes in five locations were measured and summarised 
in the Supplementary Fig. 3. Among the five locations, 
E1, E2 and E3 had favourable environments for all 

Table 1: Description of environments used in the experiment
Environment Code Location Name Latitude Longitude Altitude Land Type Soil Type
E1 BHU Agriculture Research farm –I 25.18° N 80.30° E 81M Up land Inceptisol
E2 BHU Agriculture Research farm –II 25.18° N 80.30° E 81M Low land Inceptisol
E3 Bhikaripur 25.26° N 82.83° E 87M Low land Inceptisol
E4 Karsada 25.22° N 82.90° E 85M Up land Inceptisol
E5 Rampur 25.23°N 82.89°E 80M Up land Inceptisol

Table 2: Genotypes selected for various conditions based on Mean x WAASB bi‑plot
Sl. No. Trait Category  Genotypes and Environments
1 GYP Highly productive and stable genotypes V7, V21, V14, V16, V6, V13, V18, V5

Stable but poorly productive genotypes V17, V8, V19, V9, V11, V4, V10
Productive but unstable genotypes V3, V20, V12, E1, E2, E3
Poorly productive and unstable genotypes V15, V1, V2, E4, E5

2 GZC Highly productive and stable genotypes V3, V2, V8, V9, V10, V12, V11
Stable but poorly productive genotypes V17, V21, V15, V18, V16, V5, V13, V14
Productive but unstable genotypes V1, V4, V7, E1, E2, E3, E5
Poorly productive and unstable genotypes V20, V19, V6, E4



Behera, et al.

4 	 Emir. J. Food Agric  ●  Vol 35  ●  Issue 12  ●  2023

the genotypes, and E4 and E5 had negative effects on 
genotype performance. Different genotypes gave the 
highest yields in different locations. In BHU Agriculture 
Research Farm-I and BHU Agriculture Research Farm-II, 
the genotypes V13 and V6 gave the highest yield, and in 
Bhikaripur, the genotypes V20 and V13 gave the highest 
yield. The genotypes V3 and V5 in Karsada and V13 and 
V5 in E5 had high grain yields. The zinc content of  the rice 
genotypes was lower in the environment (E4). It may be 
due to the lower soil zinc content of  the location. Different 
genotypes had the highest zinc content in different 
locations. However, in four environments other than E4, 
genotype V1 had the highest zinc content. After V1, the 
genotypes V7, followed by V2, had high zinc content in 
three environments.

Genetic association of quantitative traits focusing 
mainly on GYP and GZC
Correlation among all the studied characters showed various 
degrees of  association among themselves (Fig. 1). Day to 
50% flowering (50% DF) and day to maturity (DM) had 
a perfect positive relationship with days to first flowering 
(1st DF). The traits number of  grains per panicle (NGP), 
grain weight per panicle (GWP), and grain yield per plant 
(GYP) had a significant positive correlation with the number 
of  seeds per panicle (NSP). Significant positive correlations 
were found for GYP with GWP, for grain Length/Breadth 
ratio (GLBR) with total effective tiller number (ENT) and 
for weight of  1000 Seed weight (1000SW) with plant height 
(PH). The trait ENT had a significant negative correlation 
with panicle length (PL), NSP, NGP, GWP and GYP. PH 

Fig 1. Genotypic correlations among 14 yield traits in the 21 high zinc rice genotypes.
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had a significant negative association with ENT (-0.57). 
But it had non-significant correlations with DM and GYP. 
The most important trait, i.e., GZC, expressed a significant 
negative correlation with seven other traits, namely, 1st DF, 
50% DF, DM, NSP, NGP, GYP, and GWP. The trait 1000SW 
also had a significant negative association with four traits, 
namely 1st DF, 50% DF, DM, and NGP. The rest of  the 
trait combinations had non-significant positive and negative 
correlations among themselves.

Evaluation and selection of rice genotypes using AMMI 
based stability method
ANOVA using AMMI analysis of high zinc rice 
genotypes under multi environment
A combined analysis of  variance was performed and 
presented in Table  3. The mean square of  genotypes, 
environments and genotype x environment interactions 
showed significant differences (p ≤ 0.01, ≤ 0.05) for the 
grain yield and zinc content of  rice genotypes. The first 
two principal components had high significant variation 
and accounted for cumulative variance was about 78.4% 
(PC1 = 52.8% and PC2 = 25.6%) for grain yield and the 
first three PCs were highly significant and accounted for 
91.4% (PC1 = 53.1%, PC2 = 24.4%, and PC3 = 13.9%) 
of  the interaction sum of  squares for grain zinc content.

Ranking of the rice genotypes according to AMMI 
based stability measures
Various AMMI stability indices for grain yield and GZC 
were estimated and presented in the Supplementary Table 3. 
The mean grain yield was observed to be highest for V13, 
followed by V6 and V5. The least ASV was expressed by 
V11, V5, V21, V9 and higher values by V20, followed by V3 
and V1. Low SIPC scores indicate more stable genotypes, 
so V11, V21, and V5 were stable in nature, while V12, 
220, and V19 were the least stable. Low EV values are also 
associated with great stability, like SIPC. V11, V21, and V5 
had lower EV values, and V12 had the highest EV value, 
followed by V20. The relative contribution of  IPCs to 
the interaction was computed as ZA values. ZA identified 
V11, followed by V21 and V5, as stable ones, whereas 
V20, V12, and V1 would be the least stable genotypes. 

According to WAASB, genotypes V11, V21, and V5 were 
highly stable genotypes. So, the genotypes V5 (IR 97443-11-
2-1-1-B) and V21 (HUR3022) have shown high yield with 
good stability. A correlation analysis among AMMI-based 
stability indices was performed and is represented in the 
supplementary Fig. 4. All the indices have shown significant 
and strong positive correlations among themselves. The 
mean grain zinc content was observed to be highest for V1, 
followed by V4 and V7. The least ASV was expressed by 
V14, V11 and V5. Low SIPC scores indicate more stable 
genotypes, so genotypes V14 and V10 were stable at high 
zinc content. The genotype V14, followed by V10 and V12, 
had lower EV values. ZA identified V14, followed by V10 
and V11 as stable ones. According to WAASB, genotypes 
V14, V10, and V11 were highly stable genotypes.

AMMI bi-plots
The AMMI stability, indicating the association between 
genotypes under investigation and test locations, was 
depicted in grain yield/plant (GYP) vs. PC1 bi-plot and 
grain zinc content (GZC) vs. PC1 bi-plot (Fig. 2). In the 
grain yield/plant (GYP) vs. PC1 bi-plot, environments E3 
and E4 were farthest from the bi-plot origin, explaining the 
great interaction forces, while environments E1, E2 and E5 
were closer to the origin of  the bi-plot with shorter vectors, 
indicating the weak interaction forces. Environments that 
cluster together influence genotypes in a similar way. As the 
bi-plot indicated, V13, followed by V6, had the maximum 
yield performance. While, some genotypes, namely V17, 
V11, V4, and V15, had poor yield performance. Therefore, 
genotypes V4, V11, and V9 exhibited great stability, while 
genotypes V16 and V21 were considered the most desirable 
because they had good yield and stability. As per the zinc 
content vs. PC1 bi-plot (Fig. 2), environments E4 and E5 
were farthest from the bi-plot origin, indicating the great 
interaction forces. Environments E1, E2 and E3 were 
clustered together, showing their similar influence on the 
GZC of  the rice genotypes. The genotypes V1, V4 and V7 
had high zinc content, while V14, V11 and V17 showed 
great stability for GZC as they were near the bi-plot origin. 
However, genotype  V2, followed by V10, had a good 
amount of  GZC with high stability.

Table 3: The AMMI analysis of variance of grain yield and zinc content in rice genotypes
Source DF Grain Yield per Plant (GYP) Grain Zinc Content (GZC)

Mean Sq % Explained % Accumulated Mean Sq % Explained % Accumulated
Environments 4 1242.509** 1362.36**
Replication (within environment) 10 8.152** 2.97NS

Genotypes 20 36.303** 143.28**
GEI 80 7.907** 14.45**
PC1 23 14.535** 52.8 52.8 26.69** 53.1 53.1
PC2 21 7.698** 25.6 78.4 13.41** 24.4 77.5
PC3 19 4.045* 12.1 90.6 8.46** 13.9 91.4
PC4 17 3.516NS 9.4 100 5.86NS 8.6 100
Residuals 200 2.404 3.91
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All five studied environments were diverse in nature, as 
represented by the AMMI bi-plots of  PC1 vs. PC2 for grain 
yield and grain zinc (Fig. 2). The AMMI bi-plot for grain 
yields indicated that PC1 (52.8%) and PC2 (25.6%) together 
explained 784.4% of  the total variation by genotype and 
GEI (Fig. 2). The results indicated that genotype  V19 
exhibited the highest grain yield in environments E1 and E5, 
while genotype V1 performed best in E4 and genotype V20 
in E3. The genotypes V3 and V4 exhibited low yields 
across various environments, suggesting that they were not 
high-yielding genotypes in any environment. Genotypes 
located closer to the origin of  the plot, such as V11, V21, 
V7, and V5, exhibited greater adaptation to low-yielding 
locations. Based on the bi-plot (Fig. 2) depicting PC1 vs. 
PC2, genotypes V19, V1, and V20 exhibited high stability 
and yield. According to the PC1  vs. grain yield AMMI 
bi-plot, genotypes V20 and V13 exhibited high yields 
and relatively low genotype-by-environment interaction 
(GEI), making them stable varieties. The AMMI 2 bi-plot 
for grain zinc concentration showed that PC1 (53.1% of  
the variance) and PC2 (24.4% of  the variance) explained 

77.5% of  the difference between genotype and GEI. The 
figure indicated that genotype V8 had the highest grain 
zinc concentration in E1 and E2, followed by V2 in E3, 
V19 in E4, and V7 in E5. V1, V3, and V9 were not high 
zinc genotypes, suggesting inadequate zinc concentration 
in some or all environments.

Evaluation and selection of rice genotypes using 
WAASB based stability method
WAASB based stability analysis
The WAAS bi-plot is also known as the Mean vs. WAASB 
bi-plot. It was constructed by considering the x-axis as 
mean values and the y-axis as the WAASB scores of  the 
genotypes (Fig. 3). The mean grain yield per plant (g), grain 
zinc content (ppm) and WAASB scores of  21 high zinc rice 
genotypes are presented in the Supplementary Table 3. The 
genotypes identified for various conditions based on the 
mean vs. WAASB bi-plot are presented in Table 2. From the 
WAASB-based stability scores of  GYP and GZC, the most 
stable genotypes were V3 (0.11) and V6 (0.16), respectively. 
A  WAASB bi-plot is used for simultaneous analysis of  

Fig 2. AMMI 1 and AMMI 2 bi-plot for GYP and GZC in the 21 rice genotypes.
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productivity, stability, and environment, with quadrants 
containing four different genotype and environment classes 
(Fig. 3).

Highly productive and stable genotypes whose means 
were greater than the grand mean with low WAASB scores 
were present in the fourth quadrant. The genotypes in this 
quadrant were V7, V21, V14, V16, V6, V13, V18 and V5 
for GYP and, for GZC, V3, V2, V8, V9, V10, V12 and 
V11. The genotypes in the third quadrant were stable but 
poorly productive, i.e., stable genotypes whose means were 
lower than the grand mean with low WAASB scores. The 
genotypes present in the third quadrant were V17, V8, V19, 
V9, V11, V4 and V10 for GYP and, for GZC, V17, V21, 
V15, V18, V16, V5, V13 and V14. Productive but unstable 
genotypes were present in the second quadrant, with the 
mean being greater than the grand mean. The unstable 
genotypes listed for GYP are V3, V20 and V12, and for 

GZC they are V1 V4 and V7. The environments found to 
be effective for discriminating against were E3, E1 and E2 
for GYP, and for GZC, they were E5, E1, E3 and E2. In the 
first quadrant, poorly productive and unstable genotypes 
and highly discriminating environments were present. This 
quadrant includes a mean that is less than the grand mean 
and the genotypes present in this quadrant for GYP are 
V15, V1, and V2 and for GZC they are V20, V19 and V6. 
In the first quadrant, environments E4 and E5 for GYP 
and GZC were discriminatory.

Supplementary Fig. 5 and 6 indicate the ranks of  21 
high zinc rice genotypes depending upon the number of  
retained IPCA used in WAASB estimation for GYP and 
GZC. In the present study, four axes were considered. 
From Supplementary Fig. 5 and 6, it was evident that the 
genotype ranks for GYP and GZC changed according 
to the extent to which IPCAs were incorporated in the 

Fig 3. Mean vs. WAASB bi-plot for GYP and GZC in high zinc rice genotypes.
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WAASB assessment. This indicates the benefit of  using 
the WAASB index to calculate stability.

Genotype ranking based on WAASBY index
The mean GYP, GZC, and WAASBBY scores of  21 high-zinc 
rice genotypes are presented in the Supplementary Table 3. In 
the present study, WAASBY was used for selection for grain 
yield and stability at the same time, with weights of  50 and 
50 for yielding and stability, respectively. The WAASBY for 
21 high-zinc rice genotypes for GYP and GZC tested in five 
environments is shown in Supplementary Table 3 and Fig. 4. 
The genotypes with the highest WAASBY scores for GYP 
were V21 (82.24), V3 (79.61), and V6 (79.23), with the lowest 
being V4 (19.98), V1 (24.37), and V11 (29.89). Genotypes 
with the highest WAASBY scores for GZC were V4 (88.66), 
V2 (87.88), V8 (83.19), V3 (82.60) and V10 (82.33), while 
the lowest were reported for V13 (23.79), V11 (32.02) and 
V20 (32.73).

Supplementary Fig. 4 depicts the evolution of  21 high-zinc 
rice genotype rankings based on the weight of  stability 
(WAASB) and yield. The ranking of  genotypes based only 
on the WAASB index in the first column on the left side 
indicated that V3, V21 for GYP, and V6, V21 for GZC 
were the most stable genotypes. The genotype rankings in 
the last column on the right side were exclusively based on 
GYP and GZC, with V13 and V1, respectively, being the 
most superior genotypes.

Supplementary Fig. 7 represented the genotypes› which-
won-where pattern based on presumed yields in each 
environment and the demarcation of  mega environments. 
For GYP, the genotype V13 excelled in environments E1, 
E2, E3, and E5, while the genotype V3 performed well 
in E4. In the case of  GZC, genotype V1 predicted high 
mean values in environments E1, E2, E3, and E5, while 
genotype V19 excelled in environment 4.

Fig 4. Estimated values of WAASBY for A- GYP and B- GZC in 21 high zinc rice genotypes.
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Best linear unbiased predictor (BLUP) based genetic 
parameters using linear mixed effects model (LMM)
The estimated genetic parameters and variance components 
from LMM are presented in Table 4. A close examination 
of  these results indicated that genotype (G), G x E 
variances were significant for traits based on the likelihood 
ratio test. The highest contribution from environmental 
variance was reported for GYP (39.20%), followed by GZC 
(10.49%). The coefficient of  determination (R2GEI) of  
genotype (G) and environment (E) interaction, i.e., G x 
E, was low to moderate. For GZC, the selection accuracy 
(AS), genotypic correlation (rge), genotypic coefficient of  
variation, mean, standard error (SE), and standard deviation 
(SD) were reported to be quite higher than for GYP.

The Quantile-Quantile (Q–Q) plot was used to check 
the normality of  the random effects of  genotypes and 
interaction effects of  21 high zinc rice genotypes for 
GYP and GZC (Supplementary Fig. 8). The BLUP mean 
values of  GYP and GZC of  rice genotypes are shown 
in Supplementary tables 4 and 5 and Fig. 5. In Fig. 5, 
the vertical error bars represent the 95% confidence 
interval of  prediction considering a two-tailed t test. Out 
of  21 genotypes, ten genotypes had an above-average 
predicted mean value for GYP, whereas for GZC, eleven 
genotypes had an above-average predicted mean value. The 
genotype V13 had the highest anticipated mean values for 
GYP, followed by V6 and V5, while the lowest reported 
was in V17. The maximum predicted mean values for GZC 
were found in genotype V1, followed by V4, V7, and V2 
with a minimum in V20.

Evaluation and selection of rice genotypes using MTSI 
based stability method
The Eigen values, explained variance, cumulative variance, 
factorial loadings after varimax rotation, and communalities 
obtained in the factor analysis are presented in the 
supplementary Table  6. In the present experiment, a 
multi-trait stability index (MTSI) was calculated based on 

grain yield per plant along with thirteen different traits 
mentioned in the Supplementary Table 7 and Table 5. 
The communality value ranged from 0.59 for days to 
1st flowering date to 0.9 for the grain weight per panicle. 
A  total of  five principal components with Eigen values 
greater than 1 are selected, contributing about 80.13% of  
the total variation. The ranking of  the 21 rice genotypes was 
done with the help of  a multi-trait stability index, i.e., the 
MTSI index. The first three genotypes (V7, V13, and V19) 
were selected as multi-trait high-performing genotypes 
according to the MTSI score and display of  14 traits free 
from multi-collinearity (Supplementary Table 7 and Fig. 6). 
The genotype V20 was closer to the selection intensity circle 
and could have desirable features. All the traits are included 
in the five factors. Grain yield per plant is included in FA1, 
whereas GZC is included in FA5. Selection differential 
for both mean performances and WAASBY are noted as 
positive in GYP but negative in GZC. This indicates the 
efficiency of  MTSI index in selecting desirable genotypes.

In the GYP, the selection differential (%)of  mean 
performances is 19.62%, and the selection differential (%) 
of  the WAASBY index is 50.91%. The selection gain (%) 
is found to be 15.35% for GYP. It is reported oppositely 
in the GZC: the selection differential (%) of  mean 
performances is -14.24 %, and the selection differential (%) 
of  the WAASBY index is -28.27 %. The selection gain (%) 
is found to be 12.8% for GZC (Table 5). The contribution 
of  each component to the MTSI is categorized as either 
less significant or more significant. The central position 
is reserved for the more significant contributing factors, 
while the less significant ones are positioned towards the 
outer edges. Fig. 6 unveils the strength and weakness view 
of  selected genotypes out of  21 rice genotypes based 
on the MTSI score. This figure is further supported by 
Supplementary Table  8. All the selected genotypes are 
weak contributors to all the traits present in five different 
factors. V6, V21 and V13 are desirable for grain yield per 
plant, grain zinc content, and other traits.

Table 4: Estimation of BLUP based genetic parameters and variance components from METs
Sl. No. Parameter GZC GYP Sl. No. Parameter GZC GYP
1 GEN 8.43*** 1.89*** 12 Mean 22.16 11.62
2 GEN: ENV 3.562*** 1.83*** 13 SE 0.32 0.26
3 Error 3.905 2.404 14 SD 5.71 4.68
4 % GV in PV 22.66 30.88 15 CV 25.83 40.32
5 % IV in PV 9.57 29.92 16 Min 9.84 (V5 in E4) 4.54 (V17 in E5)
6 % EV in PV 10.49 39.20 17 Max 32.54 (V1 in E5) 20.36 (V13 in E3)
7 PV 37.22 6.13 18 Min ENV (Avg.) E4 (14.27) E5 (7.01)
8 R2

GEI 0.22 0.30 19 Max ENV (Avg.) E5 (26.41) E3 (16.53)
9 As 0.95 0.88 20 Min GEN (Avg.) V20 (16.61) V17 (8.89)
10 rge 0.48 0.43 21 Max GEN (Avg.) V1 (26.81) V13 (14.64)
11 CVg 13.15 11.84
As ‑ Accuracy the selective accuracy; R2

ge ‑ the coefficient of determination of the interaction effects; rge ‑ the genotype‑environment correlation; CVg ‑ the 
genotypic coefficient of variation
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Fig 5. BLUP mean of GYP and GZC in 21 high zinc rice genotypes. Vertical error bars represent the 95% confidence interval of prediction 
considering a two-tailed t test.

Table 5: Selection differential and genetic gain of the mean and WAASBY index for 14 rice traits based on MTSI
VAR Factor NS WAASBY h2 SG SG (%)

Xo Xs SD SD (%) Xo Xs SD SD (%)
PH FA 1 106.72 110.72 4.00 3.75 54.83 63.67 8.84 16.11 0.81 3.22 3.02
NSP FA 1 109.27 145.17 35.90 32.85 46.47 63.71 17.24 37.11 0.90 32.44 29.69
NGP FA 1 83.12 105.09 21.97 26.44 45.77 67.41 21.64 47.27 0.91 20.06 24.14
GWP FA 1 1.51 1.95 0.44 29.13 51.18 70.20 19.02 37.17 0.87 0.38 25.29
GYP FA 1 11.62 13.90 2.28 19.62 50.73 76.55 25.82 50.91 0.78 1.78 15.35
FstDF FA 2 93.75 99.02 5.28 5.63 47.47 49.30 1.82 3.84 0.99 5.23 5.58
FDF FA 2 97.96 102.69 4.73 4.83 57.34 68.15 10.81 18.86 0.97 4.58 4.68
DM FA 2 126.81 132.58 5.77 4.55 53.82 61.37 7.55 14.02 0.99 5.69 4.49
SFP FA 3 76.37 73.04 ‑3.34 ‑4.37 50.05 36.78 ‑13.26 ‑26.50 0.67 ‑2.23 ‑2.93
STW FA 3 18.26 18.60 0.34 1.85 63.64 66.11 2.46 3.87 0.94 0.32 1.74
ENT FA 4 7.87 7.31 ‑0.56 ‑7.14 60.08 59.64 ‑0.44 ‑0.73 0.86 ‑0.48 ‑6.10
GLBR FA 4 4.00 3.96 ‑0.04 ‑1.04 62.91 68.41 5.50 8.74 0.80 ‑0.03 ‑0.83
PL FA 5 26.01 26.63 0.61 2.36 43.06 37.70 ‑5.36 ‑12.45 0.86 0.53 2.03
GZC FA 5 22.16 19.00 ‑3.16 ‑14.24 60.51 43.34 ‑17.17 ‑28.37 0.90 ‑2.84 ‑12.80
Where, Xo, mean for WAASBY index of the original population and Xs, mean for WAASBY index of the selected genotypes (V6, V13 and V21).
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DISCUSSION

Rice cultivation is prevalent throughout different ecologies 
all over the world. Climate change necessitates the 
identification of  adaptable and stable rice genotypes for 
cultivation by Seck et al. (2010) and Khush, 1997. Keeping 
this under consideration, our research was aimed at finding 
stable and adaptable rice genotypes for grain yield with 
good zinc content. In this study, AMMI was successfully 
employed to study the genotype and environmental 
interactions in rice. This technique was successfully used 
in rice for the evaluation of  stability and adaptability for 
grain yield by Kumar et al. (2017), Sandhu et al. (2019), 
Jain et al. (2019), and Kesh et al. (2021).

Compared to earlier classical methods, the use of  linear 
mixed models with best linear unbiased prediction 
(BLUP) provides an efficient way of  estimating genotype-
environment interactions (GEI). This approach is used to 
estimate different genetic parameters and is also used in 
calculating different multi-trait-based stability evaluation 
methods (Olivoto et al., 2019a; Olivoto et al., 2019b). The 
multi-trait stability index (MTSI) suggests using the mean 
performance and stability of  multiple desirable agronomic 
characters to improve varietal recommendations. The ideal 
or ideotype genotype is supposed to have a maximum 
WAASBY score of  100 for all the considered characters. 

The genotype with the lowest MTSI score is selected as it 
is closer to the ideotype. These multi-trait-based stability 
evaluation methods were successfully implemented by 
Debsharma et al. (2023) in rice, Sousa et al. (2019) in 
cowpea for immature seed production, Koundinya et al. 
(2021) in 25 cassava genotypes and Yue et al. (2022) in 28 
maize genotypes. In this present investigation, simultaneous 
selection for grain yield and zinc content has been carried 
out through MTSI.

Mean performances and trait association studies in 
21 rice genotype
The evaluation of  the agronomic performance of  
genotypes is primary step in identifying stable genotypes 
across different environments. The results of  the mean 
performances of  genotypes for grain yield and GZC 
indicated the presence of  sufficient genetic variation among 
the genotypes and all these variations might be attributed to 
the differential expression of  the genetic makeup of  the rice 
genotypes according to the environmental conditions that 
prevailed at test locations. Genotypes V13 for GYP and V1 
for GZC are considered the highest yielding, respectively. 
These genotypes are suitable for future breeding practices.

Yield is a complex trait that results from the interaction of  
different factors that either positively or negatively correlate 
with yield, as well as with each other. The correlation 
coefficient is a valuable tool for assessing the impact of  

Fig 6. Genotype ranking and selection of genotypes based on the multi-trait stability index (MTSI) considering a selection intensity of 15%.
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different traits on crop yield and their interrelationships 
during the selection process. In the selection process 
for maximizing GYP, priority is given to traits that show 
significant positive or negative correlations with yield. 
The grain yield per plant (GYP) had a significant positive 
correlation with the number of  seeds per panicle (NSP), 
number of  grains per panicle (NGP) and grain weight per 
panicle (GWP) and significant negative correlation with 
the GZC. Panicle length had a positive but non-significant 
correlation with GYP, while it had a significant positive 
correlation with GWP. This indicates that lager panicles can 
bear a greater number of  grains, resulting in a high yield. 
This result is in harmony with Jeke et al. (2021). PH had 
shown a significant negative association with ENT (-0.57); 
this result was not supported by Sadeghi (2011), Babu et al. 
(2012) and Thorat et al. (2019). The most important trait, 
i.e., GZC, expressed a significant negative correlation with 
seven other traits, namely, 1st DF, 50% DF, DM, NSP, NGP, 
GYP, and GWP (Nagesh et al., 2013).

Evaluation and selection of rice genotypes using AMMI 
based stability method
Identification of  high-yielding and stable genotypes by 
employing AMMI and BLUP simultaneously is advisable 
(Verma and Singh, 2021). The AMMI stability model is 
commonly applied to decipher GEI patterns and select 
stable genotypes in target environments (Gauch, 2013). 
AMMI is a multivariate tool and it has been found to be 
a powerful tool for determining genotype-environment 
interactions and identifying stable and adaptive genotypes 
(Jain et al., 2019). There was sufficient significant G × E 
interaction among the genotypes and the two principal 
components (PCs) contributed more than 70% to the total 
variation of  GEI, suggesting the AMMI bi-plot is effective 
in identifying the stable genotypes. The genotypes with the 
lowest values of  AMMI stability indices are considered 
the most stable. As per the PC1 vs. grain yield AMMI bi-
plot, V20 and V13 were the high yielding genotypes with 
relatively less GEI and were considered stable varieties 
(Anuradha et al., 2021). Comparing different AMMI 
stability indices, the genotypes V11, V5 and V21 for GYP 
and V14, V10 for GZC are found to be stable and common. 
V16 and V21 for GYP and V9, V2 and V10 for GZC were 
identified as stable based on the AMMI model and bi-plot. 
The identified stable genotypes can be used in the variety 
development programme.

Evaluation and selection of rice genotypes using 
WAASB based stability method
The WAASB index is a mixed-model version of  the AMMI 
that treats genotypes as random variables and accounts for 
all IPCAs while calculating genotypic stability. Olivoto et al. 
(2019a) proposed it for WAASB. The WAASB stability 
index has been used to identify stable genotypes in a variety 

of  studies. In the present study, based on WAASB-based 
stability scores, the stable genotypes identified for GYP are 
V3 and V6 for GZC, respectively. Based on the WAASBY 
score, the desirable genotypes identified for GYP are 
V21 and V4 for GZC, respectively. Similarly, some stable 
genotypes for various economic traits were discovered 
by various workers, including wheat grain yield (Verma 
and Singh, 2020), various cassava traits (Koundinya et al., 
2020), barley grain yield (Ahakpaz et al., 2021), soyabean 
grain yield (Nataraj et al., 2021), and cassava mosaic and 
anthracnose disease resistance (Tize et al., 2021). To select 
genotypes based on mean performance and the WAASB 
stability score, a superiority index that allows weighing 
between mean performance and stability (WAASBY) was 
created by Olivoto et al. (2019a). Breeders can prioritise 
weights for yield and stability based on their breeding goals 
and varietal recommendations. In this study, the grain yield 
and WAASB score weights were 50 and 50, respectively, to 
come up with this superiority score.

Significant GEIs for complex variables like grain yield 
will prevent selection efficiency, making it difficult to 
generate adaptable cultivars (Rao et al., 2011). The mean 
vs. WAAS bi-plot can also be used to determine genotype-
environment interaction. Nataraj et al. (2021) also used the 
WAASB stability model to understand GEI in soybean. The 
interactions of  the environments were similar to genotypes 
when they flocked together on the bi-plot. The higher the 
WAASB score of  an environment, the more it interacts 
with genotypes. If  the environmental factors are above 
average, they have a favourable impact on the quality. The 
lower-than-average environmental mean values indicate 
that the environment has a negative impact. If  the WAASB 
score is really high, then the genotypes’ influence on the 
environment was extremely high. The environment effect, 
followed by GEIs, produced the most variation in this 
study. This is consistent with previous findings in Cassava 
yield trials by Koundinya et al. (2020); Bhartiya et al. (2018) 
in Soyabean and Olivoto et al. (2019a) in Oat, suggesting 
the importance of  environmental factors in yield trials of  
the above mentioned crops.

Normally, the GGE (Genotype + Genotype x Environment) 
bi-plot is employed to locate mega-environments. In order 
to portray the same, Olivoto et al. (2019a) presented a 
graphic representation by plotting the character nominal 
means (yij) against IPCA1 values in the environment. 
Through these graphs (Fig. 9), genotypes were identified 
that perform well in each environment, which leads 
to genotype recommendations for specific regions or 
environments to exploit the use of  narrow adaptations 
because, in the majority of  cases, no single genotype 
consistently wins in every environment (Olivoto et al., 
2019a; Koundinya et al., 2020).
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Evaluation and selection of rice genotypes using BLUP 
based stability method
The AMMI ANOVA is based on a fixed-effects model in 
which genotype and environmental effects are assumed 
to be constant. The mixed model techniques allow for 
the estimation of  significant parameters in quantitative 
genetics, such as genotypic and interaction variances, genetic 
correlations, and coefficients of  determination, which are 
important from the perspective of  a plant breeder. These 
details are crucial in a plant breeding effort, and they should 
be used in evaluation as well. Piepho (1994) recommends 
using mixed models to estimate the G x E interaction 
because the genotypic effects are unpredictable. In LMM, 
G x E was calculated using the genotype effect as a random 
variable. The BLUP provides more accurate forecasts of  
genotypes’ future mean values by combining genotype and 
environment effects in a mixed model approach. It is more 
helpful to plant breeders since it is better at dealing with 
unbalanced or incomplete data (Smith et al., 2005).

Similar to the analysis of  variance (ANOVA) of  AMMI, the 
ANOVA of  LMM revealed substantial differences among 
genotypes and their interactions with the environment. 
The percent of  genotypic variation in phenotypic variance 
was higher than the percent of  environmental variation in 
phenotypic variation for GZC and vice versa in the case 
of  GYP. The environment has a considerable impact on 
the phenotypic expression of  traits. The low to medium 
R2GEI of  GYP and GZC revealed the presence of  high 
residual variance in the G x E interaction component. 
The correlation between observed and expected values is 
the genotypic accuracy of  selection (As) (Olivoto et al., 
2019a). The high As values of  GYP and GZC characters 
represent the trustworthiness of  this model’s ability to 
pick superior genotypes. The low to medium rge for GYP 
and GZC indicated complications in selecting superior 
stable genotypes for these traits and the need for detailed, 
accurate information. Based on BLUP-based parameters, 
the desirable genotypes identified for GYP is V13 and V1 
for GZC, respectively. Similar results were found in cowpea 
for immature seed production by Sousa et al. (2019) and in 
cassava for harvest index, days to maturity by Koundinya 
et al. (2020) and Debsharma et al. (2023) in rice.

Evaluation and selection of rice genotypes using MTSI 
based stability method
The MTSI Index is a unique and simple selection approach 
that allows breeders and agronomists to pick plants based 
on their performance and stability at the same time when 
multiple traits data is present (Olivoto et al., 2019a). Plant 
breeders primary goal is to select genotypes with a high 
mean and stable performance; thus, the MTSI index is a 
useful tool for them (Olivoto et al., 2019 b). A genotype 
with the lowest MTSI is considered closer to the ideotype 

and thus selected. This index indicated that three genotypes 
(V7, V13, and V19) had the highest performance for all 
studied traits. Genotype V14, located in close proximity 
to the cut point, may possess some beneficial traits and 
so further investigation is required for it. More genetic 
gains can be predicted from the selected genotypes for 
all the considered traits as per the MTSI index. The high 
heritability and genetic gain of  the genotypes chosen 
based on the WAASBY score suggested their stability 
and suitability for these attributes. By selecting and 
including these genotypes in the varietal development and 
ideotype breeding strategies, the traits mentioned above 
might be improved. Trait strength and weakness can be 
assessed using factor analysis, specifically by examining 
the contribution of  each component to the MTSI. Traits 
that closely resemble the ideotype have lower proportions, 
which can be attributed to the factor located near the 
outer edge of  the figure. These genotypes are suitable for 
breeding high-yielding, high-GZC varieties. The strength 
and weakness plot is a useful graphical tool for evaluating 
and selecting genotypes based on their respective traits. 
Based on the MTSI score, the contribution of  each 
component is divided into two categories: those that 
contribute less (displayed towards the edge) and those that 
contribute more (displayed in the middle). It allows for 
the identification of  genotypes that can be improved in 
terms of  their strengths and weaknesses. All the selected 
genotypes (V6, V21 and V13) are weak contributors to 
all the traits, suggesting these genotypes could be used in 
ideotype breeding. In Soyabean, Zuffo et al. (2020) also 
used MTSI to identify stable genotypes under drought and 
salinity conditions at the same time. Similar kinds of  results 
are also reported by Olivoto et al. (2021) in Strawberry; 
Yue et al. (2022) in maize hybrids; Olivoto et al. (2019 b) 
in oat and Debsharma et al. (2023) in rice.

CONCLUSION

Zinc is essential for gene expression, protein structural 
integrity, cell division, insulin action enhancement, 
micronutrient regulation, and the body’s defence system 
enhancement. Increasing the micronutrient content of  
staple crops like rice might help reduce hidden hunger, 
as milled rice lacks micronutrients. Plant breeding 
programmes need to understand GE structure and nature 
to identify superior genotypes. So, using agronomical 
and grain iron and zinc data from multiple sites makes 
it possible to find lines with good grain yield and stable 
grain zinc levels, as well as to understand how the growing 
environment affects the expression of  micronutrients. This 
helps breeders reach their goal of  making bio-fortified rice 
varieties. The genetic association study revealed significant 
negative correlations between grain zinc content and grain 
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yield per plant but positive correlations between 1000 
seed weight, spikelet fertility percent, total effective tiller 
number, and grain zinc content. There was a significant G 
× E interaction and V16 and V21 for GYP and V9, V2 and 
V10 for GZC were identified as stable based on the AMMI 
model and bi-plot. V11, V5 and V21 for GYP and V14, 
V10 for GZC are found to be stable and common in all 
AMMI stability parameters. V6, V13 and V5 for GYP and 
V10, V8 and V2 for GZC were identified as stable based 
on the mean vs. WAASB bi-plot. V21 for GYP and V4 for 
GZC were the highest yielder and widely adaptable based 
on WAASBY scores. V13 for GYP and V1 for GZC were 
all-time winners. V13 and V1 have the highest predicted 
mean for GYP and GZC, respectively, based on BLUP. V6, 
V21 and V13 were identified as stable and selected based 
on the MTSI. Using BLUP-based stability methods, MTSI, 
and strength and weakness plots are potential and more 
efficient tools that make evaluating and selecting genotypes 
for varietal recommendations easier. These results of  this 
investigation will also provide a pipeline for future Zn-
fortified rice breeding studies.
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Table S1: List of high zinc rice genotypes and 14 traits used for the experiment (Source: IRRI South Asia Hub, Hyderabad, India) 
Entry No. Entry Name Genotype Code Grain Zinc Content (Ppm) Sl. No. Trait Name Abbreviation 
1 IR 95044:8‑B‑5‑22‑19‑GBS V1 20.6 1 Days to 1st flowering 

date 
Fst DF 

2 IR 84847‑RIL 195‑1‑1‑1‑1 V2 21.8 2 Days to 50% flowering FDF 
3 IR 99704‑24‑2‑1 V3 14.67 3 Days to maturity DM 
4 IR 99647‑109‑1‑1 V4 23.7 4 Total effective tiller 

number 
ENT 

5 IR 97443‑11‑2‑1‑1‑1‑1 ‑B V5 14.45 5 Plant height (cm) PH 
6 IR 97443‑11‑2‑1‑1‑1‑3 ‑B V6 23.47 6 Panicle length (cm) PL 
7 IR 82475‑110‑2‑2‑1‑2 V7 24.73 7 Number of spikelets per 

panicle 
NSP 

8 IR 96248‑16‑3‑3‑2‑B V8 27.18 8 Number of grains/
panicles 

NGP 

9 R‑RHZ‑7 V9 26.61 9 Spikelets fertility 
Percentage 

SFP 

10 CGZR‑1 V10 24.43 10 Grain weight per panicle GWP 
11 BRRI dhan 62 V11 23.33 11 Weight of 1000 Seed 

(gm) 
STW 

12 BRRI dhan 64 V12 24.97 12 Grain Length/Breadth 
ratio 

GLBR 

13 BRRI dhan 72 V13 20.7 13 Grain Zinc content 
(ppm) 

GZC 

14 DRR Dhan 45 V14 18.13 14 Grain yield/plant (gm) GYP 
15 DRR Dhan 48 V15 19.2    
16 DRR Dhan 49 V16 17.63    
17 IR 64 V17 23.57    
18 MTU1010 V18 21.70    
19 Sambamahsuri V19 24.47    
20 Swarna V20 18.89    
21 Local check (HUR3022) V21 16.9    
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Table S3: AMMI based stability indices and Weighted average of absolute scores for GYP and GZC in high zinc rice genotypes
 
GEN 

GYP GZC 
Y1 ASV SIPC EV ZA WAASB Y2 ASV SIPC EV ZA WAASB 

V1 10.19 2.17 1.68 0.05 0.23 0.77 26.64 2.64 2.48 0.07 0.25 0.95 
V10 10.07 1.70 1.70 0.06 0.20 0.68 25.06 0.80 0.88 0.01 0.08 0.30 
V11 9.79 0.20 0.28 0.00 0.03 0.08 23.05 0.57 1.15 0.02 0.09 0.30 
V12 11.65 1.88 2.78 0.18 0.26 0.83 23.97 0.90 1.07 0.01 0.10 0.37 
V13 14.58 1.36 1.50 0.03 0.17 0.54 17.04 1.66 1.44 0.03 0.14 0.55 
V14 11.90 1.31 1.20 0.03 0.14 0.47 21.89 0.53 0.54 0.00 0.05 0.19 
V15 10.76 1.89 1.70 0.05 0.20 0.66 20.62 1.42 1.97 0.07 0.16 0.60 
V16 13.18 0.92 1.11 0.03 0.11 0.35 19.74 1.06 1.21 0.02 0.11 0.41 
V17 8.97 1.41 1.60 0.05 0.17 0.56 21.89 0.97 1.43 0.03 0.12 0.43 
V18 12.50 1.40 1.75 0.05 0.19 0.60 20.75 0.84 1.74 0.05 0.13 0.45 
V19 10.87 1.49 2.02 0.10 0.19 0.60 20.35 4.70 3.09 0.13 0.37 1.48 
V2 10.79 1.92 1.45 0.03 0.19 0.66 25.70 1.58 2.07 0.08 0.17 0.59 
V20 12.44 3.32 2.21 0.10 0.30 1.02 16.65 2.83 1.93 0.05 0.22 0.86 
V21 12.88 0.47 0.48 0.00 0.05 0.18 20.91 1.49 1.49 0.03 0.15 0.56 
V3 12.29 2.36 1.70 0.06 0.22 0.74 24.11 1.70 2.19 0.06 0.19 0.71 
V4 9.92 1.11 1.23 0.06 0.11 0.33 25.97 2.05 2.28 0.06 0.21 0.80 
V5 13.80 0.41 0.76 0.01 0.07 0.21 17.39 0.59 1.63 0.05 0.11 0.38 
V6 14.23 1.38 1.32 0.03 0.15 0.51 19.06 2.32 2.06 0.05 0.21 0.81 
V7 11.86 0.90 0.90 0.02 0.10 0.32 25.79 3.14 2.22 0.07 0.25 0.97 
V8 11.11 1.53 1.63 0.04 0.19 0.61 24.87 1.49 1.77 0.04 0.16 0.60 
V9 10.20 0.49 0.80 0.01 0.07 0.21 23.87 1.15 1.32 0.04 0.11 0.37 
*Y1‑ yield/plant, Y2‑grain zinc content, ASV‑ AMMI stability values, SIPC‑Sums of the absolute value of the IPC scores, EV‑ Averages of the squared 
eigenvector values, ZA‑Absolute value of the relative contribution of IPCs to the interaction and WAASB‑ Weighted Average of Absolute Scores.

Table S4: Mean grain yield per plant (gm) and zinc content (ppm) and WAASB and WAASBY scores of 21 high zinc rice genotypes
Sl. No Code GYP GZC 

Y rResp WAASB rWAASB WAASBY rWAASBY Y rResp WAASB rWAASB WAASBY rWAASBY 
1 V1 10.19 17 0.62 19 24.37 20 26.64 1 0.81 20 67.78 10 
2 V2 10.79 14 0.52 15 36.57 15 25.70 4 0.31 4 87.88 2 
3 V3 12.29 8 0.11 1 79.61 2 24.11 7 0.26 2 82.60 4 
4 V4 9.92 19 0.65 20 19.98 21 25.96 2 0.32 6 88.66 1 
5 V5 13.80 3 0.48 11 66.22 6 17.38 19 0.48 12 37.75 17 
6 V6 14.23 2 0.35 8 79.23 3 19.06 18 0.16 1 62.08 12 
7 V7 11.86 10 0.56 17 43.62 13 25.79 3 0.48 11 79.97 6 
8 V8 11.11 12 0.29 6 55.96 8 24.87 6 0.32 5 83.19 3 
9 V9 10.20 16 0.49 12 33.75 16 23.87 9 0.34 7 77.42 7 
10 V10 10.07 18 0.50 14 31.89 17 25.06 5 0.36 9 82.33 5 
11 V11 9.79 20 0.49 13 29.89 19 23.04 10 1.16 21 32.02 20 
12 V12 11.65 11 0.54 16 42.63 14 23.97 8 0.51 14 69.31 9 
13 V13 14.58 1 0.81 21 50.00 11 17.04 20 0.73 18 23.79 21 
14 V14 11.90 9 0.15 3 72.66 5 21.89 11 0.45 10 61.99 13 
15 V15 10.76 15 0.59 18 31.84 18 20.62 15 0.61 15 47.37 14 
16 V16 13.18 4 0.28 5 75.33 4 19.74 17 0.69 17 39.18 16 
17 V17 8.97 21 0.18 4 44.69 12 21.88 12 0.29 3 69.90 8 
18 V18 12.50 6 0.41 9 59.68 7 20.75 14 0.67 16 45.40 15 
19 V19 10.87 13 0.33 7 50.72 10 20.35 16 0.79 19 37.22 18 
20 V20 12.44 7 0.48 10 54.40 9 16.64 21 0.51 13 32.73 19 
21 V21 12.88 5 0.14 2 82.24 1 20.90 13 0.35 8 62.09 11 
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Table S5: Prediction of GZC and GYP of 21 high zinc rice genotypes over five environments through BLUP analysis
GEN GZC GYP 

BLUPg BLUPge BLUPg+ge Predicted BLUPg BLUPge BLUPg+ge Predicted 
V1 4.03 0.33 4.36 26.52 ‑1.12 ‑0.22 ‑1.34 10.28 
V2 3.18 0.26 3.45 25.60 ‑0.65 ‑0.13 ‑0.78 10.84 
V3 1.76 0.14 1.90 24.06 0.53 0.10 0.63 12.25 
V4 3.42 0.28 3.70 25.86 ‑1.33 ‑0.26 ‑1.59 10.03 
V5 ‑4.29 ‑0.35 ‑4.64 17.52 1.71 0.33 2.04 13.66 
V6 ‑2.78 ‑0.23 ‑3.01 19.15 2.05 0.40 2.44 14.06 
V7 3.27 0.27 3.54 25.69 0.19 0.04 0.23 11.84 
V8 2.44 0.20 2.63 24.79 ‑0.40 ‑0.08 ‑0.48 11.14 
V9 1.54 0.13 1.67 23.83 ‑1.11 ‑0.22 ‑1.33 10.29 
V10 2.61 0.21 2.82 24.98 ‑1.21 ‑0.23 ‑1.45 10.17 
V11 0.80 0.07 0.86 23.02 ‑1.43 ‑0.28 ‑1.71 9.91 
V12 1.63 0.13 1.77 23.92 0.02 0.00 0.03 11.65 
V13 ‑4.60 ‑0.38 ‑4.98 17.18 2.31 0.45 2.76 14.38 
V14 ‑0.24 ‑0.02 ‑0.26 21.90 0.22 0.04 0.26 11.88 
V15 ‑1.38 ‑0.11 ‑1.50 20.66 ‑0.67 ‑0.13 ‑0.80 10.82 
V16 ‑2.17 ‑0.18 ‑2.35 19.81 1.22 0.24 1.46 13.07 
V17 ‑0.24 ‑0.02 ‑0.26 21.90 ‑2.07 ‑0.40 ‑2.47 9.15 
V18 ‑1.26 ‑0.10 ‑1.37 20.79 0.69 0.13 0.83 12.45 
V19 ‑1.63 ‑0.13 ‑1.76 20.40 ‑0.59 ‑0.11 ‑0.70 10.92 
V20 ‑4.96 ‑0.41 ‑5.36 16.80 ‑0.59 ‑0.11 ‑0.70 10.92 
V21 ‑1.13 ‑0.09 ‑1.22 20.94 0.99 0.19 1.18 12.80 

Table S6: BLUP parameters for the trait GZC (ppm) and GYP (gm) in 21 high zinc rice genotypes
GEN BLUP Parameters of GZC BLUP Parameters of GYP 

Y 
(GZC) 

HM
GV 

HM
GV_R 

RP
GV 

RP
GV_Y 

RP
GV_R 

HM
RP
GV 

HM
RP

GV_Y 

HM
RP

GV_R 

Y (GZC) HM
GV 

HM
GV_R 

RP
GV 

RP
GV_Y 

RP
GV_R 

HM
RP
GV 

HM
RP

GV_Y 

HM
RP

GV_R 
V1 26.64 24.72 1 1.19 26.31 1 1.18 26.22 1 10.19 8.95 16 0.90 10.40 16 0.88 10.19 17 
V2 25.70 24.49 3 1.16 25.66 3 1.15 25.57 3 10.79 9.64 12 0.95 11.03 13 0.94 10.88 13 
V3 24.11 23.32 7 1.10 24.29 7 1.09 24.13 7 12.29 11.23 6 1.09 12.66 6 1.07 12.45 6 
V4 25.97 24.54 2 1.16 25.80 2 1.16 25.76 2 9.92 7.84 20 0.84 9.71 20 0.81 9.37 20 
V5 17.39 15.98 21 0.78 17.25 19 0.77 17.09 20 13.80 12.43 3 1.20 13.96 3 1.20 13.89 3 
V6 19.06 18.59 17 0.87 19.33 18 0.87 19.25 18 14.23 12.52 2 1.22 14.19 2 1.22 14.17 2 
V7 25.79 23.67 5 1.15 25.40 4 1.14 25.26 4 11.86 10.64 7 1.04 12.03 8 1.03 11.96 8 
V8 24.87 23.60 6 1.12 24.79 6 1.12 24.74 6 11.11 8.80 17 0.92 10.72 15 0.91 10.54 15 
V9 23.87 22.88 8 1.08 23.92 8 1.08 23.84 9 10.20 8.48 18 0.87 10.07 18 0.86 9.98 18 
V10 25.06 24.13 4 1.14 25.15 5 1.13 25.08 5 10.07 8.98 15 0.88 10.27 17 0.88 10.20 16 
V11 23.05 22.11 10 1.04 23.10 10 1.04 23.07 10 9.79 8.24 19 0.84 9.71 19 0.83 9.65 19 
V12 23.97 22.77 9 1.08 23.90 9 1.08 23.89 8 11.65 9.73 11 1.00 11.56 11 0.97 11.28 11 
V13 17.04 16.35 19 0.77 17.17 20 0.77 17.14 19 14.58 12.75 1 1.25 14.53 1 1.24 14.46 1 
V14 21.89 20.72 11 0.98 21.82 11 0.98 21.81 11 11.90 10.09 9 1.01 11.73 10 1.01 11.70 9 
V15 20.62 19.89 14 0.94 20.77 14 0.93 20.72 13 10.76 9.97 10 0.96 11.15 12 0.95 11.03 12 
V16 19.74 18.40 18 0.89 19.62 17 0.88 19.53 17 13.18 11.64 4 1.14 13.25 4 1.13 13.17 4 
V17 21.89 20.42 12 0.98 21.72 12 0.98 21.66 12 8.97 7.81 21 0.78 9.09 21 0.78 9.02 21 
V18 20.75 19.45 15 0.93 20.64 16 0.93 20.57 16 12.50 10.56 8 1.06 12.28 7 1.05 12.24 7 
V19 20.35 20.27 13 0.95 21.00 13 0.93 20.57 15 10.87 9.36 14 0.94 10.92 14 0.93 10.77 14 
V20 16.65 16.32 20 0.77 16.96 21 0.76 16.90 21 12.44 9.46 13 1.02 11.81 9 0.99 11.48 10 
V21 20.91 19.41 16 0.94 20.73 15 0.93 20.63 14 12.88 11.37 5 1.11 12.90 5 1.11 12.89 5 
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Table S7: Eigen values, explained variance, factorial loadings after varimax rotation, and communalities obtained in the factor 
analysis
Sl. No. Traits FA1 FA2 FA3 FA4 Communality 
1 Days to 1st flowering date ‑0.2 ‑0.96 ‑0.1 0 0.98 
2 Days to 50% flowering ‑0.19 ‑0.97 ‑0.08 0.03 0.98 
3 Days to maturity ‑0.19 ‑0.97 ‑0.08 0 0.98 
4 Total effective tiller number 0.52 ‑0.23 ‑0.57 ‑0.42 0.83 
5 Plant height (cm) ‑0.18 0 0.81 0.16 0.71 
6 Panicle length (cm) ‑0.22 ‑0.06 0.13 0.88 0.83 
7 Number of spikelets per panicle ‑0.97 ‑0.16 0.1 0.05 0.98 
8 Number of grains/panicles ‑0.97 ‑0.15 ‑0.06 0.14 0.98 
9 Spikelets fertility Percentage 0.13 0.06 ‑0.78 0.42 0.8 
10 Grain weight per panicle ‑0.79 ‑0.01 0.5 0.34 0.99 
11 Weight of 1000 Seed (gm) 0.4 0.3 0.77 0.26 0.91 
12 Grain Length/Breadth ratio 0.13 ‑0.24 ‑0.33 ‑0.15 0.21 
13 Grain Zinc content (ppm) 0.71 0.5 0.07 0.09 0.76 
14 Grain yield/plant (gm) ‑0.78 ‑0.29 0.29 0.18 0.8 
15 Eigen Value 5.51 3.69 1.51 1.04  
16 Variance 39.36 26.32 10.78 7.44  
17 Cumulative Variance 39.36 65.68 76.46 83.9  

Fig S2. Correlation heat map of AMMI based stability indices.

Fig S1. Weather data of rice crop growth cycle during kharif season 
2017 (June-November).

SUPPLEMENTARY FIGURES
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Fig S4. Ranks of 21 high zinc rice genotypes for A-GYP and B-GZC 
considering different weights for stability and yielding. The most-left 
ranks were obtained considering the stability only. The most right-ranks 
were obtained considering the grain yield (A) and grain zinc content (B).

B

A

Fig S3. Heat map showing the ranks of 21 high zinc rice genotypes 
for (A) GYP and (B) GZC evaluated in five environments in relation 
to the number of interaction principal component axes (IPCA) used in 
WAASB genotype vs. environment interaction estimation.
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Fig S5. Which-won-where plots based on predicted yields (Nominal 
yield- (A) GYP, (B) GZC) in each environment for 21 high zinc rice 
genotypes as a function of the environment scores of the first interaction 
principal component axis (IPCA1).
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Fig S6. Quantile-Quantile (Q – Q) plot to check normality of the random effects of genotypes and interaction effects of 21 high zinc rice genotypes 
for (A) GYP and (B) GZC.
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