Avicennia marina biomass characterization towards bioproducts

Authors

  • Saleha Almardeai Khalifa University of Science and Technology, Masdar Institute, Masdar City, P.O. Box 54224, Abu Dhabi, United Arab Emirates
  • Juan-Rodrigo Bastidas- Oyanedel Khalifa University of Science and Technology, Masdar Institute, Masdar City, P.O. Box 54224, Abu Dhabi, United Arab Emirates
  • Sabeera Haris Khalifa University of Science and Technology, Masdar Institute, Masdar City, P.O. Box 54224, Abu Dhabi, United Arab Emirates
  • Jens Ejbye Schmidt Khalifa University of Science and Technology, Masdar Institute, Masdar City, P.O. Box 54224, Abu Dhabi, United Arab Emirates

DOI:

https://doi.org/10.9755/ejfa.2017.v29.i9.109

Keywords:

Avicennia marina; biomass characterization; glucan; lignocellulose; mangrove

Abstract

Avicennia marina is the only naturally occurring mangrove specie in the arid Arabian Gulf coast of the United Arab Emirates (UAE). Due to the water scarcity of this arid-region, A. marina is a precious biomass resource for the UAE that does not require fresh water for growing, and is able to grow in the Arabian Gulf high salinity conditions, over 40g/kg. This non-fresh water lignocellulosic arid-region bioresource may be used for the production of high valuable chemicals. The objective of the present manuscript is to characterize the lignocellulosic composition of Arabian Gulf A. marina, as a first attempt to highlight its importance in a biobased economy in arid regions. Avicennia marina stem, leaves and pneumatophors samples were collected from two locations in the United Arab Emirates. A. marina samples were chemically characterized for sugar composition, ash content and byproducts using standardized protocols. The analysis revealed that A. marina arabinan, xylan, glucan and lignin composition ranges, in g/100g_TS (TS: total solids), between 1-22, 5-18, 10-31, and 21-48, respectively. The highest composition of xylan and glucan (g/100g_TS) was obtained for stems and pneumatophors, 45 and 38, respectively. Xylan and glucan are the polymeric precursors for the production of high value chemicals, e.g. furfural and hydroxymethylfurfural (HMF), respectively. Under the characterization conditions, it was obtained furfural and HMF (g/100g_TS) in the ranges of 0.05-0.42, and 0.45-2.1, respectively.

Downloads

Download data is not yet available.

References

Agustina, D., S. Kumagai, M. Nonaka and K. Sasaki. 2013. Production of 5-hydroxymethyl furfural from sugarcane bagasse under hot compressed water. Procedia Earth Planet Sci. 6: 441–447.

Alvira, P., E. Tomás-Pejó, M. Ballesteros and M.J. Negro. 2010. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresour. Technol. 101:4851–4861.

Ashraf, M., C. Fang, T. Bochenski, I. Cybulska, A. Alassali, A. Sowunmi, R. Farzanah, G. P. Brudecki, T. Chaturvedi, S. Haris, J.E. Schmidt and M.H. Thomsen. 2016. Estimation of Bioenergy Potential for Local Biomass in the United Arab Emirates. Emirates J. Food Agric. 28: 99-106.

Bastidas-Oyanedel, J.R., C. Fang, S. Almardeai, U. Javid, A. Yousuf and J.E. Schmidt. 2016. Waste biorefinery in arid/semi-arid regions. Bioresour. Technol. 215: 21–28.

Böer, B. 1997. An introduction to the climate of the United Arab Emirates. J. Arid Environ. 35: 3–16.

Cai, C.M., T. Zhang, and C.E. Wyman. 2013. Integrated furfural production as a renewable fuel and chemical platform from lignocellulosic biomass. J. Chem. Technol. Biotechnol. 89: 2-10.

Cheng, Z.S., J.H. Pan, W.C. Tang, Q.J. Chen and Y.C. Lin. 2009. Biodiversity and biotechnological potential of mangrove-associated fungi. J. For. Res. 20:63–72.

Cybulska, I., T. Chaturvedi, G.P. Brudecki, Z. Kadar, A.S. Meyer, R.M. Baldwin and M.H. Thomsen. 2014. Chemical characterization and hydrothermal pretreatment of Salicornia bigelovii straw for enhanced enzymatic hydrolysis and bioethanol potential. Bioresour. Technol. 153:165–172.

EAD. 2016. Status of mangroves in abu dhabi - Biodiversity annual report 2014. Environmental Agency - Abu Dhabi

Fang, C., M.H. Thomsen, G.P. Brudecki, I. Cybulska, C.G. Frankaer, J.R. Bastidas-Oyanedel and J.E. Schmidt. 2015. Seawater as Alternative to Freshwater in Pretreatment of Date Palm Residues for Bioethanol Production in Coastal and/or Arid Areas. ChemSusChem. 8:3823–3831.

FitzPatrick, M., P. Champagne, M.F. Cunningham and R.A. Whitney. 2010. A biorefinery processing perspective: Treatment of lignocellulosic materials for the production of value-added products. Bioresour. Technol. 101:8915–8922.

Gupta, A., M.A. Hicks, S.P. Manchester and K.L.J. Prather. 2016a. Porting the synthetic D-glucaric acid pathway from Escherichia coli to Saccharomyces cerevisiae. Biotechnol. J. 11:1201-1208.

Gupta, A., D. Singh, A.R. Byreddy, T. Thyagarajan, S.P. Sonkar, A.S. Mathur, D.K. Tuli, C.J. Barrow and M. Puri. 2016b. Exploring omega-3 fatty acids, enzymes and biodiesel producing thraustochytrids from Australian and Indian marine biodiversity. Biotechnol. J. 11:345–355

Han, W.D. 2003. Present status and conservation strategies of mangrove resource in Guangdong, P.R. China. J. For. Res. 14:151–154.

Jönsson, L.J. and C. Martín. 2015. Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects. Bioresour. Technol. 199:103–112.

Kairo, J.G., F. Dahdouh-Guebas, J. Bosire and N. Koedam. 2001. Restoration and management of mangrove systems - a lesson for and from the East African region. South African J. Bot. 67:383–389.

Kathiresan, K., and B.L. Bingham. 2001. Biology of Mangroves and Mangrove Ecosystems. Adv. Mar. Biol. 40:81–251.

Konig, G., and H. Rimpler.1985. Iridoid glucosides in Avicennia marina. Phytochemistry. 24:1245–1248.

Liebezeit, G. 2012. Natural products chemistry of the mangrove species Avicennia spp. - Review and new data. Nat. Prod. Indian J. 8:10–20.

Mijan Uddin, S.M., A.T.M. Rafiqul Hoque and S.A. Abdullah. 2014. The changing landscape of mangroves in Bangladesh compared to four other countries in tropical regions. J. For. Res. 25:605–611.

Millero, F.J., R. Feistel, D.G. Wright, and T.J. McDougall. 2008. The composition of Standard Seawater and the definition of the Reference-Composition Salinity Scale. Deep Sea Res. Part I: Oceanogr. Res. Pap. 55:50–72.

Mitra, A., S.C. Santra and J. Mukherjee. 2008. Distribution of actinomycetes, their antagonistic behaviour and the physico-chemical characteristics of the world’s largest tidal mangrove forest. Appl. Microbiol. Biotechnol. 80:685–695.

Moorkoth, D. and K.M. Nampoothiri. 2016. Production and characterization of poly(3-hydroxy butyrate-co-3 hydroxyvalerate) (PHBV) by a novel halotolerant mangrove isolate. Bioresour. Technol. 201:253–260.

Popp, M. 1984. Chemical composition of Australian mangroves II. Low molecular weight carbohydrates. Z. Pflanzenphysiol. 113:411–421.

Ramadan, M.F., M.M.A. Amer, H.T. Mansour, K.M. Wahdan, R.M. El-Sayed, S. El-Sanhoty and W.A. El-Gleel. 2009. Bioactive lipids and antioxidant properties of wild Egyptian Pulicaria incise, Diplotaxis harra, and Avicennia marina. J. Verbrauch. Lebensm. 4:239.

Sato, G., A. Fisseha, S. Gebrekiros, H.A. Karim, S. Negassi, M. Fischer, E. Yemane, J. Teclemariam and R. Riley. 2005. A novel approach to growing mangroves on the coastal mud flats of Eritrea with the potential for relieving regional poverty and hunger. Wetlands. 25:776–779.

Shaifullah, K.M., S.M.S. Haque, M. Sujauddin and S. Karmakar. 2009. Coastal afforestation effects on soil properties at Hatiya in Bangladesh. J. For. Res. 20:243–248.

Smith, R., A. Purnama and H.H. Al-Barwani. 2007. Sensitivity of hypersaline Arabian Gulf to seawater desalination plants. Appl. Math. Model. 31:2347–2354.

Sowunmi, A., R.M. Mamone, J.R. Bastidas-Oyanedel and J.E. Schmidt. 2016. Biogas potential for electricity generation in the Emirate of Abu Dhabi. Biomass Convers. Biorefin. 6: 39-47.
Wu, J., Q. Xiao, J. Xu, M.Y. Li, J.Y. Pan and M.H. Yang. 2008. Natural products from true mangrove flora: source, chemistry and bioactivities. Nat. Prod. Rep. 25:955–981.

Zhang, Y.H.P. 2008. Reviving the carbohydrate economy via multi-product lignocellulose biorefineries. J. Ind. Microbiol. Biotechnol. 35:367–375.

Published

2017-10-17

How to Cite

Almardeai, S., J.-R. B.-. Oyanedel, S. Haris, and J. E. Schmidt. “Avicennia Marina Biomass Characterization towards Bioproducts”. Emirates Journal of Food and Agriculture, vol. 29, no. 9, Oct. 2017, pp. 710-5, doi:10.9755/ejfa.2017.v29.i9.109.

Issue

Section

Regular Articles

Most read articles by the same author(s)