Development of a Jerte Valley cherry-based beverage by fermentation of lactic acid bacteria and characterization of its potential functional value

  • Maria Garrido Department of Physiology (Neuroimmunophysiology and Chrononutrition Research Group), Faculty of Science, University of Extremadura. Avda. Elvas s/n 06006 Badajoz (Spain).
  • Maria Elena Bote Department of Physiology (Immunophysiology Research Group), Faculty of Science, University of Extremadura. Avda. Elvas s/n 06006 Badajoz (Spain).
  • Daniel Moreno Technological Institute of Food and Agriculture (CICYTEX-INTAEX). Junta de Extremadura. Av. Adolfo Suárez s/n 06071 Badajoz (Spain).
  • Jonathan Delgado Adamez Technological Institute of Food and Agriculture (CICYTEX-INTAEX). Junta de Extremadura. Av. Adolfo Suárez s/n 06071 Badajoz (Spain).

Abstract

Lactic fermentation is a low-cost and sustainable bio-preservation method that aims to retain the sensory and nutritional characteristics of raw matrices. In this study two lactic fermentation processes were set up to elaborate two fermented cherry beverages as well as to determine their nutritional and functional characteristics. Differences between both processes were based on the pasteurization conditions and ascorbic acid addition time. The results were compared with those obtained in cherry fresh fruit and two pasteurized cherry purées. The purée and beverage obtained through protocol 2 (where ascorbic acid addition was carried out before the pasteurization process, which was applied during 5 minutes) were the most effective in preserving the reddish color of fruits compared to those obtained in protocol 1 (where ascorbic acid addition was carried out after the pasteurization process, which was applied during 10 minutes) . Similarly, protocol 2 was more efficient in preventing the loss of phenolic compounds and anthocyanins. The levels of serotonin did not change after the fermentation processes, whereas the amino acid concentration was higher in cherry-fermented beverages. Better results were obtained in cherry-fermented beverages. The lactic fermentation could be a useful and feasible technique to obtain natural drinks with functional / nutritional qualities.

References

Akula, R., P. Giridhar and G.A. Ravishankar. 2011. Phytoserotonin: a review. Plant Signal. Behav. 6: 800–809.
Ávila, M., M. Hidalgo, C. Sánchez-Moreno, C. Pelaez, T. Requena and S. de Pascual-Teresa. 2009. Bioconversion of anthocyanin glycosides by Bifidobacteria and Lactobacillus. Food Res. Int. 42: 1453-1461.
Bernalte, M. J., M. T. Hernández, M. C. Vidal-Aragón and E. Sabio. 1999. Physical, chemical, flavor and sensory characteristics of two sweet cherry varieties grown in 'Valle del Jerte'. J. Food Quality. 22: 403-416.
Blando, F. and B. D. Oomah. 2019. Sweet and sour cherries: Origin, distribution, nutritional composition and health benefits. Trends Food Sci. Technol. 86: 517-529.
Cano, A., J. Hernández-Ruíz, F. García-Cánovas, M. Acosta and M. B. Arnao. 1998. An end-point method for estimation of the total antioxidant activity in plant material. Phytochem. Anal. 9: 196-202.
Chaovanalikit, A. and R. E. Wrolstad. 2004. Total anthocyanins and total phenolics of fresh and processed cherries and their antioxidant properties. J. Food Sci. 69: FCT67-FCT72.
Chen, Y., L. J. Yu and H. P. V. Rupasinghe. 2013. Effect of thermal and non-thermal pasteurisation on the microbial inactivation and phenolic degradation in fruit juice: a mini-review. J. Sci. Food Agric. 93: 981-986.
Coyago-Cruz, E., M. Corell, A. Moriana, D. Hernanz, C. M. Stinco and A. J. Meléndez-Martínez. 201). Effect of the fruit position on the cluster on fruit quality, carotenoids, phenolics and sugars in cherry tomatoes (Solanum lycopersicum L.). Food Res. Int. 100: 804-813.
Cubero, J., F. Toribio, M. Garrido, M. T. Hernández, J. Maynar, C. Barriga, and A. B. Rodríguez. 2010. Assays of the amino acid tryptophan in cherries by HPLC-Fluorescence. Food Anal. Methods. 3: 36-39.
Delgado, J., M. P. Terrón, M. Garrido, C. Barriga, S. D. Paredes, J. Espino and A. B. Rodríguez. 2012. Systemic inflammatory load in young and old ringdoves is modulated by consumption of a Jerte Valley cherry-based product. J. Med. Food. 15: 707-712.
Di Cagno, R., R. F. Surico, G. Minervini, C. G. Rizzello, R. Lovino, M. Servili, A. Taticchi, S. Urbani and M. Gobbetti. 2011. Exploitation of sweet cherry (Prunus avium L.) puree added of stem infusion through fermentation by selected autochthonous lactic acid bacteria. Food Microbiol. 28: 900-909.
Di Cagno, R., R. F. Surico, A. Paradiso, M. De Angelis, J. C. Salmon, S. Buchin, L. De Gara and M. Gobbetti. 2009. Effect of autochthonous lactic acid bacteria starters on health-promoting and sensory properties of tomato juices. Int. J. Food Microbiol. 128: 473-483.
Espino, J., I. Bejarano, S. D. Paredes, C. Barriga, A. B. Rodríguez and J. A. Pariente. 2011. Protective effect of melatonin against human leukocyte apoptosis induced by intracellular calcium overload: relation with its antioxidant actions. J. Pineal Res. 51: 195-206.
Faienza, M. F., F. Corbo, A. Carocci, A. Catalano, M. L. Clodoveo, M. Grano, D. Q. H. Wang, G. D’Amato, M. Muraglia, C. Franchini, G. Brunetti and P. Portincasa. 2020. Novel insights in health-promoting properties of sweet cherries. J. Funct. Foods. 69: 103945.
Fras, P., F. M. Campos, T. Hogg and J. A. Couto. 2014. Production of volatile phenols by Lactobacillus plantarum in wine conditions. Biotechnol. Lett. 36: 281-285.
Garrido, M., J. Espino, D. González-Gómez, M. Lozano, C. Barriga, S. D. Paredes and A. B. Rodríguez. 2012. The consumption of a Jerte Valley cherry product in humans enhances mood, and increases 5-hydroxyindoleacetic acid but reduces cortisol levels in urine. Exp. Gerontol. 47: 573-580.
González-Gómez, D., M. Lozano, M. F. Fernández-León, M. C. Ayuso, M. J. Bernalte and A. B. Rodríguez. 2009. Detection and quantification of melatonin and serotonin in eight Sweet Cherry cultivars (Prunus avium L.). Eur. Food Res. Technol. 229: 223-229.
González-Gómez, D., M. Lozano, M.F. Fernández-León, M. J. Bernalte, M. C. Ayuso, and A. B. Rodríguez. 2010. Sweet cherry phytochemicals: Identification and characterization by HPLC-DAD/ESI-MS in six sweet-cherry cultivars grown in Valle del Jerte (Spain). J. Food Compos. Anal. 23: 533-539.
Hugo, P. C., J. Gil-Chávez, R. R. Sotelo-Mundo, J. Namiesnik, S. Gorinstein and G. A. González-Aguilar. 2012. Antioxidant interactions between major phenolic compounds found in 'Ataulfo' mango pulp: chlorogenic, gallic, protocatechuic and vanillic acids. Molecules. 17:12657-12664.
Hurrell, R. F. and P. A. Finot. 1983. Food processing and storage as a determinant of protein and amino acid availability. Experientia Suppl. 44: 135-156.
Kachouri, F., H. Ksontini, M. Kraiem, K. Setti, M. Mechmeche and M. Hamdi. 2015. Involvement of antioxidant activity of Lactobacillus plantarum on functional properties of olive phenolic compounds. J. Food Sci. Technol. 52: 7924-7933.
Kouniaki, S., P. Kajda and I. Zabetakis. 2004. The effect of high hydrostatic pressure on anthocyanins and ascorbic acid in blackcurrants(Ribes nigrum). Flavour Frag. J. 19: 281-286.
Liao, X. Y., L. Q. Guo, Z. W. Ye, L. Y. Qiu, F. W. Gu and J. F. Lin. 2016. Use of autochthonous lactic acid bacteria starters to ferment mango juice for promoting its probiotic roles. Prep. Biochem. Biotech. 46: 399-405.
Lima, V. L. A. G., E. A. Mélo, M. I. S. Maciel, F. G. Prazeres, R. S. Musser and D. E. S. Lima. 2005. Total phenolic and carotenoid contents in acerola genotypes harvested at three ripening stages. Food Chem. 90: 565-568.
Linnewiel-Hermoni, K., M. Khanin, M. Danilenko, G. Zango, Y. Amosi, J. Levy, J. and Y. Sharoni. 2015. The anti-cancer effects of carotenoids and other phytonutrients resides in their combined activity. Arch. Biochem. Biophys. 572: 28-35.
Macedo, J. A., V. Battestin, M. L. Ribeiro and G. A. Macedo. 2011. Increasing the antioxidant power of tea extracts by biotransformation of polyphenols. Food Chem. 126: 491-497.
Madeira, J. V., V. M. Nakajima, J. A. Macedo, and G. A. Macedo. 2014. Rich bioactive phenolic extract production by microbial biotransformation of Brazilian Citrus residues. Chem. Eng. Res. Des. 92: 1802-1810.
Mulabagal, V., G. A. Lang, D. L. Dewitt, S. S. Dalavoy and M. G. Nair. 2009. Anthocyanin content, lipid peroxidation and cyclooxygenase enzyme inhibitory activities of sweet and sour cherries. J. Agr. Food Chem. 57: 1239-1246.
Nayak, B. N. and H. S. Buttar. 2016. Evaluation of the antioxidant properties of tryptophan and its metabolites in in vitro assay. J. Complement. Integr. Med. 13: 129-136.
Patras, A., N. P. Brunton, C. O’Donnell and B. K. Tiwari. 2010. Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends Food Sci. Tech. 21: 3-11.
Pilowsky, P. M. 2018. Serotonin: The Mediator that Spans Evolution. United States: Elsevier.
Rocha-Pimienta, J., M. Garrido, D. Martin-Vertedor, A. B. Rodriguez and J. Delgado-Adamez. 2019. The effects of the intake of functional cherry beverage on non-specific immune parameters in rats. Eur. J. Hortic. Sci. accepted.
Sass-Kiss, A., M. Tóth-Markus, H. G. Daood, D. Bánáti, J. Nyéki and Z. Szabó. 2010. Effect of variety and cultivation technology on phenols and antioxidant activity of sweet and sour cherry. Int. J. Hortic. Sci. 16: 59-61.
Singleton, V. L. and J. A. Rossi. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagments. Am. J. Enol. Viticult. 16: 144-158.
Torres, S., H. Verón, L. Contreras and M. I. Isla. 2020. An overview of plant-autochthonous microorganisms and fermented vegetable foods. Food Sci. Hum. Well. 9: 112–123.
Tsai, Y.-T., P. -C. Cheng and T.-M. Pan. 2012. The immunomodulatory effects of lactic acid bacteria for improving immune functions and benefits. App. Microbiol. Biot. 96: 853-862.
Valdés, E., M. Vilanova, E. Sabio and M. J. Benalte. 2011. Clarifying agents effect on the nitrogen composition in must and wine during fermentation. Food Chem. 125: 430-437.
Wouters, D., N. Bernaert, N. Anno, B. Van Droogenbroeck, M. De Loose, E. Van Bockstaele and L. De Vuyst. 2013. Application’ and validation of autochthonous lactic acid bacteria starter cultures for controlled leek fermentations and their influence on the antioxidant properties of leek. Int. J. Food Microbiol.165: 121-133.
Yang, X., J. Zhou, L. Fan, Z. Qin, Q. Chen and L. Zhao. 2018. Antioxidant properties of a vegetable–fruit beverage fermented with two Lactobacillus plantarum strains. Food Technol Biotech. 27: 1719-1726.
Statistics
110 Views | 152 Downloads
How to Cite
Garrido, M., M. E. Bote, D. Moreno, and J. D. Adamez. “Development of a Jerte Valley Cherry-Based Beverage by Fermentation of Lactic Acid Bacteria and Characterization of Its Potential Functional Value”. Emirates Journal of Food and Agriculture, Vol. 32, no. 10, Nov. 2020, pp. 711-22, doi:https://doi.org/10.9755/ejfa.2020.v32.i10.2174. Accessed 23 May 2022.
Section
Research Article