Variation in protein and amino acids content among landraces of common bean (Phaseolus vulgaris L.)

  • Ángel Ramón Flores-Sosa Universidad Veracruzana, Centro de Investigación y Desarrollo en Alimentos, Industrial Ánimas, 91190 Xalapa, Veracruz, México.
  • Elia Nora Aquino-Bolaños Universidad Veracruzana, Centro de Investigación y Desarrollo en Alimentos, Industrial Ánimas, 91190 Xalapa, Veracruz, México.
  • Anaberta Cardador-Martínez Instituto Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Bioingeniería, Epigmenio González 500, Fracc. San Pablo, 76130, Querétaro, México.
  • José Luis Chávez-Servia CIIDIR-Oaxaca, Instituto Politécnico Nacional-México. Hornos 1003, Santa Cruz Xoxocotlán, 71230, Oaxaca, México.
  • Araceli Minerva Vera-Guzmán CIIDIR-Oaxaca, Instituto Politécnico Nacional-México. Hornos 1003, Santa Cruz Xoxocotlán, 71230, Oaxaca, México.
  • José Cruz Carrillo-Rodríguez Instituto Tecnológico del Valle de Oaxaca, Oaxaca, México. Exhacienda Nazareno Santa Cruz Xoxocotlán, 71230, Oaxaca, México.
  • Jimena Esther Alba Jiménez CONACyT-Universidad Veracruzana, Centro de Investigación y Desarrollo en Alimentos, Industrial Ánimas, 91190 Xalapa, Veracruz, México.


Native bean populations (Phaseolus vulgaris L.) provide bioactive and nutrient compounds; however, their amino acid profiles are unknown. Therefore, the aim of this study is to evaluate the protein content and amino acid profile of 46 native bean populations cultivated by small farmers in Oaxaca, Mexico, and compare them with that of commercial beans. Through high-performance liquid chromatography (HPLC), 16 amino acids were identified and quantified in all samples. The region of origin influenced the concentrations of amino acids. The Santa Lucia Miahuatlan populations stood out for their high content of isoleucine, threonine, methionine, arginine, serine, alanine, tyrosine, and cysteine. Amino acid content showed high variability among the populations; accessions labeled as FSLM22, FSLM27, FSLM28, and FSLM32 were enriched in aliphatic, hydroxylated, aromatic, acidic, and basic amino acids, while the FSLM14, FSLM17, and FSLM18 populations had the highest concentrations of sulfur amino acids. The FSLM01, FSLM22, FSLM27, FSLM28, FSLM30, and FSLM32 populations frequently displayed the highest concentrations of essential amino acids. The findings show that samples of native populations are highly variable in amino acid content due to the genetic characteristics of cultivated beans, environmental and agroecological influences, and crop management by farmers. The beans populations stood out can be used for direct use or a basis for the initiation of a breeding program.


Alaiz, M., J.L. Navarro, J. Girón and E. Vioque. 1992. Amino acid analysis by high-performance liquid chromatography after derivatization with diethyl ethoxymethylenemalonate. J. Chromatogr. A. 591(1-2):181-186.
Alsmeyer, R. H., A.E. Cunningham, and M.L. Happich. 1974. Equations predict PER from amino acid analysis. Food Technol. 28:34-40.
Audu, S.S., and M.O. Aremu. 2011. Nutritional composition of raw and processed pinto bean (Phaseolus vulgaris L.) grown in Nigeria. J. Food Agric. 9: 72-80.
Baptista, A., O. Pinho, E. Pinto, S. Casal, C. Mota and I.M. Ferreira. 2017. Characterization of protein and fat composition of seeds from common beans (Phaseolus vulgaris L.), cowpea (Vigna unguiculata L. Walp) and bambara groundnuts (Vigna subterranea L. Verdc) from Mozambique. Food Measure. 11:442-450.
Barampama, Z., and R.E. Simard. 1993. Nutrient composition, protein quality and antinutritional factors of some varieties of dry beans (Phaseolus vulgaris) grown in Burundi. Food Chem. 47:159-167.
Bitochi, E., L. Nanni, E. Bellucci, M. Rossi, A. Giardini, P.S. Zeuli and R. Papa. 2012. Mesoamerican origin of the common bean (Phaseolus vulgaris L.) is revealed by sequence data. Proc. Natl. Acad. Sci. U.S.A. 109:E788-E796.
Black, R. E., C.G. Victora, S.P. Walker, Z.A. Bhutta, P. Christian, M. De Onis, M. Ezzati, S. Grantham-McGregor, J. Katz, R. Martorell and R. Uauy. 2013. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 382:427-451.
Boye, J., R. Wijesinha-Bettoni, and B. Burlingame. 2012. Protein quality evaluation twenty years after the introduction of the protein digestibility corrected amino acid score method. Brit. J. Nutr.108:S183-S211.
Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72:248-254.
Carbas, B., N. Machado, D. Oppolzer. L. Ferreira, M. Queiroz, C. Brites, E. A. Rosa, and A. I. Barros. 2020. Nutrients, antinutrients, phenolic composition, and antioxidant activity of common bean cultivars and their potential for food applications. Antioxidants 9(2): 186.
Chávez-Mendoza, C., and E. Sánchez. 2017. Bioactive compounds from Mexican varieties of the common bean (Phaseolus vulgaris): Implications for health. Molecules. 22(8): 1360.
Chávez-Servia, J.L., E. Heredia-García, N. Mayek-Pérez, E. N. Aquino-Bolaños, S. Hernández-Delgado, J.C. Carrillo-Rodríguez, H.R. Gill-Langarica and A.M. Vera-Guzmán. 2016. Diversity of common bean (Phaseolus vulgaris L.) landraces and the nutritional value of their grains. In: A.K. Goyal (ed.), Grain Legumes, InTech, Rijeka, Croatia. pp: 1-33.
Espino-Sevilla, M.T., L.R. Pérez-Bernala, M.Z. Reyna-Villelaa, D. Rojas-Bravoa and E.C. Lugo-Cervantesa. 2017. Composición y caracterización de las proteínas de las principales variedades de frijol (Phaseolus vulgaris L.) que se cultivan en el estado de Jalisco, México. Investigación y Desarrollo en Ciencia y Tecnología de Alimentos 2:72-76.
FAOSTAT. 2013. Food Supply - Crops Primary Equivalent. Retrieved April 21, 2020, from
Florez, A., M. Pujolà, J. Valero, E. Centelles, A. Almirall and F. Casañas. 2009. Genetic and environmental effects on chemical composition related to sensory traits in common beans (Phaseolus vulgaris L.). Food Chem. 113:950-956.
Freudenberg, A., K.J. Petzke and S. Klaus. 2012. Comparison of high-protein diets and leucine supplementation in the prevention of metabolic syndrome and related disorders in mice. J. Nutr. Biochem. 23:1524-1530.
Grimble, R.F. 2006. The effects of sulfur amino acids intake on immune function in humans. J. Nutr. 136:1660S–1665S.
Gropper, S.S. and J.L. Smith. 2013. Advanced Nutrition and Human Metabolism. Sixth edition. Belmont, CA, USA, Wadsworth,Cengage Learning.
Gundogan, R., and A. C. Karaca. 2020. Physicochemical and functional properties of proteins isolated from local beans of Turkey. LWT- Food Sci. Technol. 130:109609.
Guzmán‐Maldonado, S.H., J. Acosta‐Gallegos and O. Paredes‐López. 2000. Protein and mineral content of a novel collection of wild and weedy common bean (Phaseolus vulgaris L.). J. Sci. Food Agric. 80:1874-1881.
Henderson, J.W., R.D. Ricker, B.A. Bidlingmeyer and C. Woodward. 2000. Rapid, accurate, sensitive, and reproducible HPLC analysis of amino acids. Application Bulletin 5980-1193E. Agilent Technologies. Palo Alto, California, USA. 10 p.
Kigel, J. 1999. Culinary and nutritional quality of Phaseolus vulgaris seeds as affected by environmental factors. Biotechnol. Agron. Soc. Environ. 3(4):205-209.
Li, P, Y.L. Yin, D.F. Li, S.W. Kim and G. Wu. 2007. Amino acids and immune function. British J. Nutr. 98:237–252.
Marliss, E.B., S. Chevalier and R. Gougeon. 2006. Elevations of plasma methylarginines in obesity and ageing are related to insulin sensitivity and rates of protein turnover. Diabetologia 49:351–359.
Pérez, P., G. Esquivel, R. Rosales and J.A. Acosta-Gallegos. 2002. Caracterización física, culinaria y nutricional de frijol del altiplano subhúmedo de México. Archivos Latinoamericanos de Nutrición 52:172-180.
Rezende, A.A., M.T.B. Pacheco, V.S.N. da Silva and T.A.P. de Casto-Ferreira. 2017. Nutritional and protein quality of dry Brazilian beans (Phaseolus vulgaris L.). Food Sci. Technol., Campinas 38(3):421-427.
Schumacher, H., H.M. Paulsen, A.E. Gau, W. Link, H.U. Jürgens, O. Sass and R. Dieterich. 2011. Seed protein amino acid composition of important local grain legumes Lupinus angustifolius L., Lupinus luteus L., Pisum sativum L. and Vicia faba L. Plant Breeding 130(2):156-164.
Soleri, D., M. Worthington, F. Aragón-Cuevas, S.E. Smith, and P. Gepts. 2013. Farmers’ varietal identification in a reference sample of local Phaseolus species in the Sierra Juárez, Oaxaca, Mexico. Econ. Bot. 67: 283-298.
Sotelo, A., H. Sousa and M. Sanchez. 1995. Comparative study of the chemical composition of wild and cultivated beans (Phaseolus vulgaris). Plant Foods Hum. Nutr. 47:93-100.
Wang, N., A. Hou, J. Santos and L. Maximiuk. 2017. Effects of cultivar, growing location, and year on physicochemical and cooking characteristics of dry beans (Phaseolus vulgaris). Cereal Chem. 94:128-134.
Worthington, M., D. Soleri, F. Aragón-Cuevas and P. Gepts. 2012. Genetic composition and spatial distribution of farmer-managed Phaseolus bean plantings: an example from a village in Oaxaca, Mexico. Crop Sci. 52: 1721-1735.
177 Views | 275 Downloads
How to Cite
Flores-Sosa, Ángel R., E. N. Aquino-Bolaños, A. Cardador-Martínez, J. L. Chávez-Servia, A. M. Vera-Guzmán, J. C. Carrillo-Rodríguez, and J. E. A. Jiménez. “Variation in Protein and Amino Acids Content Among Landraces of Common Bean (Phaseolus Vulgaris L.)”. Emirates Journal of Food and Agriculture, Vol. 32, no. 10, Nov. 2020, pp. 750-6, doi: Accessed 23 May 2022.
Research Article