Review regarding the genomic evolution in sheep milk production and their application to improve the selection criteria

  • Cristina Lazăr National Research Development Institute for Animal Biology and Nutrition (INCDBNA) Laboratory of Management of Animal Genetic Resources, Calea București no. 1, Balotești, Ilfov, 077015, România
  • Mihail Alexandru Gras National Research Development Institute for Animal Biology and Nutrition (INCDBNA) Laboratory of Management of Animal Genetic Resources, Calea București no. 1, Balotești, Ilfov, 077015, România
  • Rodica Ștefania Pelmu National Research Development Institute for Animal Biology and Nutrition (INCDBNA) Laboratory of Management of Animal Genetic Resources, Calea București no. 1, Balotești, Ilfov, 077015, România
  • Cătălin Mircea Rotar National Research Development Institute for Animal Biology and Nutrition (INCDBNA) Laboratory of Management of Animal Genetic Resources, Calea București no. 1, Balotești, Ilfov, 077015, România
  • Florin Popa National Research Development Institute for Animal Biology and Nutrition (INCDBNA) Laboratory of Management of Animal Genetic Resources, Calea București no. 1, Balotești, Ilfov, 077015, România

Abstract

Genomic era beginning in 2009 when a lot of studies were undertaken in small ruminants to revel the animal genomes and this new technology make possible this achievement with specific tools like ovine SNP chip. First countries with tradition in sheep production that participated and implemented this new technology for Genomic evaluation were Australia, New Zealand followed by France that applied genomics in dairy sheep and goats. Researches were made recently to fill the existent gap for sheep dairy breeds having in mind the examples from dairy cattle from United States of America. The complex mechanism of milk production involves many genes responsible with different tasks. Some of this genes had the expression in the mammary gland. Genomics helps a lot sheep breeders by minimizing genotyping cost with a better understanding of how to maximize benefits of genomic selection. To be able to accomplish worldwide foods necessities for human requirements, we must have in mind the demographic explosion, the climate change and the eminent crises that will appear soon, in agriculture and animal science and start to found sustainable solutions for these problems. Genomic information helps a lot to take the most appropriate decision when is all about how to select an animal that must be genetically conserved, avoiding the biased estimating breeding values and keeping the genetic diversity.

References

Alkass, J., D. Aziz, and H. Hermiz. 2017. Genetic parameters of growth traits in Awassi sheep. Emir. J. Food and Agric., 3, 1. 152-61, doi:https://doi.org/10.9755/ejfa.v3i1.5
Astruc, J. M., G. Lagriffoul, H. Larroque, A. Legarra, C. Moreno, R. Rupp, and F . Barillet. 2010. Use of genomic data in French dairy sheep breeding programs: Results and prospects. In Proc. 37th International Committee for Animal Recording (ICAR) Annual Meeting, Riga, Latvia. ICAR, Rome, Italy.
Auvray, B., J.C. McEwan, S. Newman, A.N. Lee, and K.G. Dodds, 2014. Genomic prediction of breeding values in the New Zealand sheep industry using a 50K SNP chip. J. of Anim. Sci. 92(10):4375–4389. doi:10.2527/jas.2014-7801.
Baloche, G., A. Legarra, G. Sallé, H. Larroque, J.M. Astruc, C. Robert-Granié, and F. Barillet.. 2014. Assessment of accuracy of genomic prediction for French Lacaune dairy sheep. J. Dairy Sci. 97(2):1107–1116. doi:10.3168/jds.2013-7135.
Bauer J., M. Milerski, J. Pribyl, J. Vostry. 2012. Estimation of genetic parameters and evaluation of test-day milk production in sheep, Czech J. of Anim. Sci. 57(11):522-528, DOI: 10.17221/6385-CJAS.
Barillet, F. 1997. Genetics of milk production. Pages 539–564 in The Genetics of Sheep. Piper, I. and Ruvinsky, A., ed. CAB International, Wallingford, Oxfordshire, UK.
Barillet, F., C. Marie, M. Jacquin, G. Lagriffoul, and J. M. Astruc, 2001. The French Lacaune dairy sheep breed: Use in France and abroad in the last 40 years. Livestock Prod. Sci. 71:17–29.
Barillet, F. 2007. Genetic improvement for dairy production in sheep and goats. Small Rum. Res. 70:60–75, https://doi.org/10.1016/j.smallrumres.2007.01.004.
Balteanu, V. A., A. Vlaic, F. D. Pop, T. C. Carsai, C. Pascal, St. Creanga, N. Zaharia, I. Padeanu, O. S. Voia, M. Sauer, I. V. Sauer. 2010. The study of αS1-casein genetic marker polymorphism in Carpathian goat breed, Sci. Paper Anim. Husb., Iasi, 53: 321-325
Bernstine R.L. 1970. A chronic renal model for the fetus. Lab Anim. Care 20, 949–956.
Bionaz, M., J.J. Loor. 2008. Gene networks driving bovine milk fat synthesis during the lactation cycle. BMC Genomics. 9:366. Epub 2008/08/02. https://doi.org/10.1186/1471-2164-9-366 PMID: 18671863; PubMed Central PMCID: PMC2547860.
Bowles, D., A. Carson, P. Isaac .2014. Genetic distinctiveness of the Herdwick sheep breed and two other locally adapted hill breeds of the UK. PLoS ONE. 9, e87823.
Brito, L.F., M. Jafarikia, D.A. Grossi, J.W. Kijas, L.R. Porto-Neto, R.V. Ventura, M. Salgorzaei, and F.S. Schenkel. 2015. Characterization of linkage disequilibrium, consistency of gametic phase and admixture in Australian and Canadian goats. BMC Genet. 16:67. doi:10.1186/s12863-015-0220-1.
Burkin D.J., F. Yang, T. Broad, J. Wienberg, D.F. Hill, and M.A. Ferguson-Smith.1997. Use of the Indian muntjac idiogram to align conserved chromosomal segments in sheep and human genomes by chromosomal painting. Genomics, 46, 143–147.
Cake M.A., R.A. Read, G. Corfield, A. Daniel, D. Burkhardt, M.M. Smith, and C.B. Little. 2012. Comparison of gait and pathology outcomes of three meniscal procedures for induction of knee osteoarthritis in sheep. Osteoarthritic Cartilage, doi: 10.1016/j.jaco.2012.10.001.
Carillier, C., H. Larroque, I. Palhière, V. Clément, R. Rupp, and C. Robert-Granié. 2013. A first step toward genomic selection in the multi-breed French dairy goat population. J. of Dairy Sci. 96(11):7294–7305. doi:10.3168/jds.2013-6789.
Carillier, C., H. Larroque, and C., Robert- Granié. 2014. Comparison of joint versus purebred genomic evaluation in the French multi-breed dairy goat population. Gen. Sel. Evol. 46:67. doi:10.1186/s12711-014-0067-3.
Carillier-Jacquin, C., H. Larroque, and C. Robert-Granié. 2015. Including casein αs1 gene effect on genetic and genomic evaluation of French dairy goats. In: Proc. 66th Annual Meeting of the EAAP, Warsaw, Poland, 31 Aug.–4 Sept. 2015.
Carta, A., S. Casu, and S. Salaris. 2009. Invited review: Current state of genetic improvement in dairy sheep. J. of Dairy Sci. 92:5814– 5833.
Carter M.W., G. Matrone, and G. Metzler .1965. Estimation of the life span of red blood cells in the growing animal in different nutritional states. J. Gen. Physiol. 49, 57–67.
Chatziplis, D.G, O. Tzamaloukas, D. Miltiadou, C. Ligda, A. Koumas, A.P. Mavrogenis, et al. 2012. Evidence of major gene(s) affecting milk traits in the Chios sheep breed. Small Rum. Res. 105(1– 3):61–8. http://dx.doi.org/10.1016/j.smallrumres.2011.12.009.
Clarke, S.M., H.M. Henry, K.G. Dodds, T.W.D. Jowett, T.R. Manley, R.M. Anderson, and J.C. McEwan. 2014. A high throughput single nucleotide polymorphism multiplex assay for parentage assignment in New Zealand sheep. PLoS ONE. 9(4):E93392. doi:10.1371/journal.pone.0093392.
Colleau, J. J., Fritz, S., Guillaume, F., Baur, A., Dupassieux, D., Boscher, M. Y., Journaux, L., Eggen, A. and D.Boichard. 2009. Simulating the potential of genomic selection in dairy cattle breeding. Rencontres Recherche Ruminants. 16:419.
Crawford A.M., G.W. Montgomery, C.A. Pierson, T. Brown, K.G. Dodds, S.L. Sunden, et al. 1994. Sheep linkage mapping: nineteen linkage groups derived from the analysis of paternal half-sib families. Genetics 87, 271–277.
Crawford A.M., K.G. Dodds, A.E. Ede, C.A. Pierson, G.W. Montgomery, G. Garmonsway, et al. .1995. An autosomal genetic linkage map of the sheep genome. Genetics 140, 703–724.
Dodds, K.G., M.L. Tate, and J.A. Sise. 2005. Genetic evaluation using parentage information from genetic markers. J. of Anim. Sci. 83 (10):2271–2279.
Dong, Y., M., Xie, Y., Jiang, N., Xiao, X, Du, W., Zhang, G., Tosser-Klopp et al. 2013. Sequencing and automated whole-genome optical mapping of the genome of a domestic goat (Capra hircus). Nat. Biotechnol. 31(2):135–141. doi:10.1038/nbt.2478.
de Roos, A. P. W. 2011. Genomic selection in dairy cattle. PhD Thesis. Wageningen Univ., Wageningen, the Netherlands.
do Rosário Marques, M., I.C. Santos, N. Carolino, C.C. Belo, R. Renaville, A. Cravador. 2006. Effects of genetic polymorphisms at the growth hormone gene on milk yield in Serra da Estrela sheep. J. Dairy Res. 73, 394–405.
Dettori, M.L., M. Pazzola, E. Pira, P. Paschino, G.M. Vacca. 2015. The sheep growth hormone gene polymorphism and its effects on milk traits. J. Dairy Res. 82, 169–176.
Di Meo G.P., A. Perucatti, S. Floriot, H. Hayes, L. Schibler, R. Rullo, et al. 2007. An advanced sheep (Ovis aries, 2n = 54) cytogenetic map and assignment of 88 new autosomal loci by fluorescence in situ hybridization and R-banding. Anim. Genet. 38, 233–240.
Duchemin, S. I., C. Colombani, A. Legarra, G. Baloche, H. Larroque, J.-M. Astruc, F. Barillet, C. Robert-Granié, and E. Manfredi. 2012. Genomic selection in the French Lacaune dairy sheep breed, J. of Dairy Sci. 95: 2723–2733, http://dx.doi.org/ 10.3168/jds.2011-4980
Everett R. W., J. F. Keown. 1984. Mixed Model Sire Evaluation with Cattle Experience and Genetic Gain. J. Anim. Sci. 59, 2, 529-541.
Eynard, S.E., J.J. Windig, G. Leroy, van R. Binsbergen, and M.P.L. Calus. 2015. The effect of rare alleles on estimated genomic relationships from whole genome sequence data. BMC Genetic. 16:24. doi:10.1186/s12863-015-0185-0.
García-Gámez, E., B. Gutiérrez-Gil, G. Sahana, J.-P. Sánchez, Y. Bayón, J.-J. Arranz. 2012. GWA analysis for milk production traits in dairy sheep and genetic support for a QTN influencing milk protein percentage in the LALBA gene. PLOS ONE, 7, e47782.
Garcia-Gamez E., B. Gutierrez-Gil, G. Sahana, J.P. Sanchez, Y. Bayon, J.J. Arranz. 2012. GWA analysis for milk production traits in dairy sheep and genetic support for a QTN influencing milk protein percentage in the LALBA gene. PLoS One. 7(10):e47782.Epub 2012/10/25.https://doi.org/10.1371/journal.pone. 0047782 PMID: 23094085; PubMed Central PMCID: PMC3475704.
Gebremedhin Gebreselassie, Haile Berihulay, Lin Jiang and Yuehui Ma. Review on Genomic Regions and Candidate Genes, 2020, Animals, 10, 33; doi:10.3390/ani10010033.
Georgios Banos Emily L., Clark, Stephen J. Bush, Prasun Dutta, Georgios Bramis, Georgios Arsenos, David A. Hume, Androniki Psifidi. 2010. Genetic and genomic analyses underpin the feasibility of concomitant genetic improvement of milk yield and mastitis resistance in dairy sheep, PLOS-ONE, https://doi.org/10.1371/journal.pone.0214346.
Goddard, M. E., and Hayes, B. J. (2007). Genomic selection. J. Anim. Breed. and Gen. 124:323–330.
Gotoh, T., K. Terada, S. Oyadomari, M. Mori. 2004. HSP70-DNAJ chaperone pair prevents nitric oxide- and CHOP-induced apoptosis by inhibiting translocation of Bax to mitochondria. Cell death and differentiation. 11(4):390–402. Epub 2004/01/31. https://doi.org/10.1038/sj.cdd.4401369 PMID: 14752510.
Gutiérrez-Gil, B., M. F. El-Zarei, L. Alvarez, Y. Bayón, L. de la Fuente, F. San Primitivo, and J. J. Arranz. 2008. Quantitative trait loci underlying udder morphology traits in dairy sheep. J. of Dairy Sci. 91:3672–3681.
Gutierrez-Gil, B., J.J. Arranz, P. Wiener. 2015. An interpretive review of selective sweep studies in Bos Taurus cattle populations: identification of unique and shared selection signals across breeds. Frontiers in genetics. 6(167). https://doi.org/10.3389/fgene.2015.00167 PMID: 26029239
Heaton, M.P., K.A. Leymaster, T.S. Kalbfleisch, J.W. Kijas, S.M. Clarke, J. McEwan, J.F. Maddox. et al. 2014. SNPs for parentage testing and traceability in globally diverse breeds of sheep. PLoS ONE. 9(4):E94851. doi:10.1371/journal.pone.0094851.
Hayes, B. J., P. J. Bowman, A. J. Chamberlain, and M. E. Goddard. 2009. Invited review: Genomic selection in dairy cattle: Progress and challenges. J. Dairy Sci. 92:433–443.
Jiang, Y., M. Xie, W., Chen, R., Talbot, J.F., Maddox, T., Faraut, C., Wu et al. 2014. The sheep genome illuminates biology of the rumen and lipid metabolism. Science 344, (6188):1168–1173. doi:10.1126/science.1252806.
Kijas, J.W., D. Townley, B.P. Dalrymple, M.P. Heaton, J.F. Maddox, A. McGrath, Wilson et al. 2009. A genome wide survey of SNP variation reveals the genetic structure of sheep breeds. PLoS ONE 4(3):E4668. doi:10.1371/journal.pone.0004668.
Kijas, J.W., L. Porto-Neto, S. Dominik, A. Reverter, R. Bunch, R. McCulloch, B.J. Hayes et al. 2014. Linkage disequilibrium over short physical distances measured in sheep using a high-density SNP chip. Anim. Gen. 45(5):754–757. doi:10.1111/ age.12197.
Kon E., G. Filardo, M. Tschon, M. Fini, G. Giavaresi, L. Marchesini Reggiani, et al. 2012. Tissue engineering for total meniscal substitution: animal study in sheep model – results at 12 months. Tissue Eng. Part A 18(15–16), 1573–1582.
Larroque, H., F. Barillet, G. Baloche, J-M. Astruc, D. Buisson, F. Shumbusho, V. Clément et al. 2014. Toward genomic breeding programs in French dairy sheep and goats. In: Proceeding 10th World Congress on Genetics Applied to Livestock Production. http://bit.ly/1OebpGS.
Lazăr, C., R. Pelmuş, D. Marin, E. Ghiţă. 2010. Preliminary investigations on milk proteins polymorphism in Carpathian goats and in F1 Carpathian Saanen hybrids, Arch. Zootech. 13:4, 45-57.
Legarra, A., C. Robert-Granié, E. Manfredi, and J.-M Elsen. 2008. Performance of genomic selection in mice. Gen. 180:611–618.
Legarra, A., I. Aguilar, and I. Misztal. 2009. A relationship matrix including full pedigree and genomic information. J. Dairy Sci. 92(9):4656–4663. doi:10.3168/jds.2009-2061.
Legarra, A., G. Baloche, F. Barillet, J.M. Astruc, C. Soulas, X. Aguerre, F. Arrese, L. Mintegi, M. Lasarte, F. Maeztu, I. Beltrán de Heredia and E. Ugarte. 2014. Within- and across-breed genomic predictions and genomic relationships for Western Pyrenees dairy sheep breeds Latxa, Manech, and Basco-Bearnaise. J. of Dairy Sci. 97(5):3200–3212. doi:10.3168/jds.2013-7745.
Leroux, C., P. Martin, M.-F. Mahé, H. Levéziel, and J.-C. Mercier. 1990. Restriction fragment length polymorphism identification of goat alpha s1-casein alleles: A potential tool in selection of individuals carrying alleles associated with a high level protein synthesis. Anim. Gen. 21(4):341–351. doi:10.1111/j.1365-2052.1990.tb01979.x.
Maddox J.F., K.P. Davies, A.M. Crawford, D.J. Hulme, D. Vaiman, E.P. Cribiu, et al. 2001. An enhanced linkage map of the sheep genome comprising more than 1000 loci. Genome Res. 11(7):1275–89.
Marshall K., J.F. Maddox, S.H. Lee, Y. Zhang, L. Kahn, J.U. Graswer, et al. 2011. Genetic mapping of quantitative trait loci for resistance to Haemonchus contortus in sheep. Anim Genet. 40, 262–272.
Martin, P., J. Raoul, and L. Bodin. 2014. Effects of the FecL major gene in the Lacaune meat sheep population. Gen. Sel. Evol. 46:48. doi:10.1186/1297-9686-46-48.
Mateescu R.G., M.L. Thonney. 2010. Genetic mapping of quantitative trait loci for milk production in sheep. Anim. Gen. 41(5):460–6.Epub2010/04/17. https://doi.org/10.1111/j.1365-2052.2010.02045.x PMID: 20394603.
Matika O., R. Pong-Wong, J.A. Woolliams, and S.C. Bishop.2011. Confirmation of two quantitative trait loci regions for nematode resistance in commercial British terminal sire breeds. Animal 5, 1149–1156.
Meuwissen, T. H. E., B. J. Hayes, and M. E. Goddard. 2001. Prediction of total genetic value using genome-wide dense marker maps. Gen. 157:1819–1829.
Misztal, I., A. Legarra, and I. Aquilar. 2009. Computing procedures for genetic evaluation including phenotypic, full pedigree, and genomic information. J. Dairy Sci. 92(9):4648–4655. doi:10.3168/jds.2009-2064.
Misztal, I., I. Aquilar, A. Legarra, S. Tsuruta, D. L. Johnson and T.J. Lawlor. 2010. A unified approach to utilize phenotypic, full pedigree and genomic information for genetic evaluation. 9th World Congress on genetic applied to livestock production. Leipzig, Germany, paper 0050.
Moioli, B., M.C. Scatà, R. Steri, F. Napolitano, G. Catillo. 2013. Signatures of selection identify loci associated with milk yield in sheep. BMC Genetic. 14, 76.
Montgomery G.W., E.A. Lord, J.M. Penrty, K.G. Dodds, T.E. Brroad, et al. 1993. The Booroola
fecundity (FecB) gene maps to sheep chromosome 6. Genomics 22, 148–153.
Mrode, R. A. 2005. Linear models for the Prediction of Animal Breeding Values. Second Edition. CABI Publishing
Mucha, S., and J.J. Windig. 2009. Effects of incomplete pedigree on genetic management of the Dutch Landrace goat. J. Anim. Breed. Gen. 126(3):250–256. doi:10.1111/j.1439-0388.2008.00757.x.
Mucha, S., R. Mrode, I. MacLaren-Lee, M. Coffey, and J. Conington. 2015. Estimation of genomic breeding values for milk yield in UK dairy goats. J. of Dairy Sci. 98(11):8201–8208. doi:10.3168/jds.2015-9682.
Ozmen, O., S. Kul, E.O. Unal. 2014. Polymorphism of sheep POU1F1 gene exon 6 and 30UTR region and their association with milk production traits. Iran. J. Vet. Res. 15, 331.
Rahmatalla, S.A, U. Muller, E.M. Strucken, M. Reissmann, G.A. Brockmann. 2011. The F279Y polymorphism of the GHR gene and its relation to milk production and somatic cell score in German Holstein dairy cattle. J. of Appl. Gen. 52(4):459–65. Epub 2011/06/11. https://doi.org/10.1007/s13353- 011-0051-3 PMID: 21660490.
Raven, L.A., B.G. Cocks, M.E. Goddard, J.E. Pryce, B. J. Hayes. 2014. Genetic variants in mammary development, prolactin signalling and involution pathways explain considerable variation in bovine milk production and milk composition. Gen. Sel. Evol. 46:29. Epub 2014/05/02. https://doi.org/10.1186/1297- 9686-46-29 PMID: 24779965; PubMed Central PMCID: PMC4036308.
Rupp, R., P. Senin, J. Sarry, C. Allain, C. Tasca, L. Ligat, D. Portes, F. Woloszyn, O. Bouchez, G. Tabouret, M. Lebastard, C. Caubet, G. Foucras, and G. Tosser- Klopp. 2015. A point Mutation in Suppressor of Cytokine Signalling 2 (Socs2) increases the Susceptibility to Inflammation of the Mammary Gland while associated with higher Body Weight and Size and higher Milk Production in a Sheep Model. Plos Gen. in press.
Rupp, R., S. Mucha, H. Larroque, J. McEwan, J. Conington. 2016. Genomic application in sheep and goat breeding. Anim. Front. 6, 1, doi:10.2527/af.2016-0006
Silva M.V., T.S. Sonstegard, O. Hanotte, J.M. Mugambi, J.F. Garcia, S. Nagda, et al. 2012. Identification of quantitative trait loci affecting resistance to gastrointestinal parasites in a double backcross population of Red Maasai and Dorper sheep. Anim. Genet. 43, 63–71.
Schaeffer, L. R. 2006. Strategy for applying genome-wide selection in dairy cattle. J. Anim. Breed. Gen. 123:218–223.
Schaeffer, L. R. 2016. Random Regression Models, http://animalbiosciences.uoguelph.ca/~lrs/BOOKS/rrmbook.pdf
Schaffer, L. R. 2018. Necessary changes to Improve Animal Model. J. Anim. Breed. Genet. 135:124-13, https://doi.org/10.1111/jbg.12321.
Scherf B.D. 2000. World watch list for domestic animal diversity. FAO/UNEP, Domestic Animal Diversity Information System (www.fao.org/dad-is/index.asp).
Shumbusho, F., J. Raoul, J.M. Astruc, I. Palhiere, and J.M. Elsen. 2013. Potential benefits of genomic selection on genetic gain of small ruminant breeding programs. J. Anim. Sci. 91(8):3644–3657. doi:10.2527/jas.2012-6205.
Springer A., K. Kratochwill, H. Bergmeister, D. Csaicsich, J. Huber, M. Bilban, et al. 2012. A combined transcriptome and bioinformatics approach to unilateral ureteral obstructive uropathy in the fetal sheep model. J. Urol. 187, 751–756.
Suarez-Vega A., B. Gutierrez-Gil, C. Klopp, G. Tosser-Klopp, J.J. Arranz. 2017. Variant discovery in the sheep milk transcriptome using RNA sequencing. BMC Genomics. 18(1):170. https://doi.org/10.1186/s12864-017-3581-1 PMID: 28202015
Stefanon, B., M. Colitti, G. Gabai, C.H Knight, C.J. Wilde. 2002. Mammary apoptosis and lactation persistency in dairy animals. The J. Dairy Res. 69(1):37–52. Epub 2002/06/06. https://doi.org/10. 1017/s0022029901005246 PMID: 12047109.
Tiezzi, F., K.L Parker-Gaddis, J.B. Cole, J.S. Clay, C. A. Maltecca. 2015. Genome-Wide Association Study for Clinical Mastitis in First Parity US Holstein Cows Using Single-Step Approach and Genomic Matrix Re- Weighting Procedure. PLoS ONE. 10(2):e0114919. https://doi.org/10.1371/journal.pone. 0114919 PMC4319771. PMID: 25658712
Tortereau, F., C. Moreno, G. Tosser-Klopp, L. Barbotte, L. Genestout, and J. Raoul. 2015. Development of a SNP parentage assignment panel for French sheep breeds. In: Proc. 66th Annual Meeting of the EAAP, Warsaw, Poland, 31 Aug.–4 Sept. 2015.
Tosser-Klopp, G., P. Bardou, O. Bouchez, C. Cabau, R. Crooijmans, Y. Dong, Donnadieu- Tonon C., et al. 2014. Design and characterization of a 52K SNP chip for goats. PLoS ONE 9(1):E86227. doi:10.1371/journal.pone.0086227.
Ulises Macías- Cruz. 2020. Post-lambing maternal effects in hair ewes fed omega-6 polyunsaturated fatty acids in the late gestation. Emir. J. of Food Agric. 32, 7. https://ejfa.me/index.php/journal/article/view/2129

Vacca, G., M. Dettori, F. Balia, S. Luridiana, M. Mura, V. Carcangiu, M. Pazzola. 2013. Sequence polymorphisms at the growth hormone GH1/GH2-N and GH2-Z gene copies and their relationship with dairy traits in domestic sheep (Ovis aries). Molec. Biol. Rep. 40, 5285–5294.
Zarrin, M., O. Wellnitz, H.A van Dorland, J.J. Gross, R.M. Bruckmaier. 2014. Hyperketonemia during lipopolysaccharide-induced mastitis affects systemic and local intramammary metabolism in dairy cows. J. of Dairy Sci. 97(6):3531–41. https://doi.org/10.3168/jds.2013-7480 PMID: 24679930
Yin Pang, A. L., W. Yee Chan. 2010. Essential Concepts in Molecular Pathology, Associated with Economically Important Production and Reproduction Traits in Sheep (Ovies aries)
Statistics
103 Views | 164 Downloads
How to Cite
Lazăr, C., M. A. Gras, R. Ștefania Pelmu, C. M. Rotar, and F. Popa. “Review Regarding the Genomic Evolution in Sheep Milk Production and Their Application to Improve the Selection Criteria”. Emirates Journal of Food and Agriculture, Vol. 32, no. 10, Nov. 2020, pp. 691-0, doi:https://doi.org/10.9755/ejfa.2020.v32.i10.2177. Accessed 23 May 2022.
Section
Research Article