Production of tortillas from nixtamalized corn flour enriched with Andean crops flours: Faba-bean (Vicia faba) and white-bean (Phaseolus vulgaris)

  • Diego Salazar G+ Biofood and Engineering research group, Technical University of Ambato (UTA), Av. Los Chasquis y Río Payamino, 180206 Ambato, Ecuador. ; Veterinary Faculty, Complutense University of Madrid, Madrid, 28040, Spain.
  • Mayra Rodas Technical University of Ambato (UTA), Av. Los Chasquis y Río Payamino, 180206 Ambato, Ecuador.
  • Mirari Arancibia Technical University of Ambato (UTA), Av. Los Chasquis y Río Payamino, 180206 Ambato, Ecuador.

Abstract

This study aims to produce corn nixtamalized tortillas enriched with faba-bean (25%, 50%, 75% w/w) and white-bean (25%, 50%, 75% w/w) flours. Faba-bean and white-bean are Andean crops (AC) rich in protein, carbohydrates, fiber, minerals, vitamins, and gluten-free. Tortillas were characterized in terms of proximal, physicochemical, sensorial, microbiological, and texture properties. Proximal composition shows that corn flour has 14.5 % less protein, 0.83 % less ash, and 1.39 % fatter than faba-bean flour, while in white-bean flour, the fiber content is three times higher. Moisture content was less than 14 %, which guarantees the control shelf-life; gluten content was approximately 5 ppm. Granulometry properties showed that flours have coarser than finesse particles, water absorption capacity showed a range of 60 to 80 g of water for 100 g of flour. In nixtamalized tortillas, high protein content was observed in samples with 25 % of corn and 75 % of two different Andean crops. Enriched tortillas showed lower lipid content, higher dietary fiber, and higher ash content than the control sample. The sensorial analysis showed that the best formulation based on overall acceptability was 25% (w/w) of corn flour and 75% of white-bean flour. The oil content showed that the samples absorbed about 8% of oil during the toasted. The hardness parameter showed that the sample CPB2575: Corn flour (25%) + White-bean flour (75%); was harder than the control. The microbiological evaluation established that the tortillas comply with the normative what indicates the absence of harmful microorganisms to public health. Color parameters showed that samples tend to lightness with a tendency to reddish color in enriched tortillas while in control are greenish. Andean crop flours are one alternative to increase the nutritional value of corn tortillas with acceptable sensorial characteristics.

References

Agrahar-Murugkar, D., Zaidi, A., & Dwivedi, S. (2018). Quality of nixtamalized, sprouted and baked multigrain chips. Nutr. Food Sci. 48: 453-467.
Almeida-Dominguez, H., Cepeda, M., & Rooney, L. (1996). Properties of commercial nixtamalized corn flours. Cereal Foods World. 41: 624-630.
Ambigaipalan, P., Hoover, R., Donner, E., Liu, Q., Jaiswal, S., Chibbar, R., Nantanga, K., & Seetharaman, K. (2011). Structure of faba bean, black bean and pinto bean starches at different levels of granule organization and their physicochemical properties. Food Res. Int. 44: 2962-2974.
Arámbula-Villa, G., González-Hernández, J., & Ordorica-Falomir, C. (2001). Physicochemical, structural and textural properties of tortillas from extruded instant corn flour supplemented with various types of corn lipids. J Cereal Sci. 33: 245-252.
Argüello-García, E., Martínez-Herrera, J., Córdova-Téllez, L., Sánchez-Sánchez, O., & Corona-Torres, T. (2017). Textural, chemical and sensorial properties of maize tortillas fortified with nontoxic Jatropha curcas L. flour. CyTA-J Food. 15: 301-306.
Bedolla, S., & Rooney, L. (1984). Characteristics of US and Mexican instant maize flours for tortilla and snack preparation. Cereal foods world: 732-735.
Briones, F. C., Iribarren, A., Peña, J., Rodriguez, R. C., & Oliva, A. (2000). Recent advances on the understanding of the nixtamalization process. Superficies y vacío. 29: 20-24.
Bryant, C. M., & Hamaker, B. R. (1997). Effect of Lime on Gelatinization of Corn Flour and Starch. Cereal Chem. 74: 171-175.
Bueso, F. J., Rooney, L. W., Waniska, R. D., & Silva, L. (2004). Combining Maltogenic Amylase with CMC or Wheat Gluten to Prevent Amylopectin Recrystallization and Delay Corn Tortilla Staling. Cereal Chem. 81: 654-659.
Cabrera-Ramírez, A., Luzardo-Ocampo, I., Ramírez-Jiménez, A., Morales-Sánchez, E., Campos-Vega, R., & Gaytán-Martínez, M. (2020). Effect of the nixtamalization process on the protein bioaccessibility of white and red sorghum flours during in vitro gastrointestinal digestion. Food Res. Int.: 109234.
Cortes, G., Salinas, M., San Martin-Martinez, E., & Martínez-Bustos, F. (2006). Stability of anthocyanins of blue maize (Zea mays L.) after nixtamalization of seperated pericarp-germ tip cap and endosperm fractions. J Cereal Sci. 43: 57-62.
Crépon, K., Marget, P., Peyronnet, C., Carrouee, B., Arese, P., & Duc, G. (2010). Nutritional value of faba bean (Vicia faba L.) seeds for feed and food. Field Crops Res. 115: 329-339.
Chaidez-Laguna, L. D., Torres-Chavez, P., Ramírez-Wong, B., Marquez-Ríos, E., Islas-Rubio, A. R., & Carvajal-Millan, E. (2016). Corn proteins solubility changes during extrusion and traditional nixtamalization for tortilla processing: A study using size exclusion chromatography. J Cereal Sci. 69: 351-357.
Chávez-Santoscoy, R. A., Gutiérrez-Uribe, J. A., Serna-Saldivar, S. O., & Perez-Carrillo, E. (2016). Production of maize tortillas and cookies from nixtamalized flour enriched with anthocyanins, flavonoids and saponins extracted from black bean (Phaseolus vulgaris) seed coats. Food Chem. 192: 90-97.
Dzudie, T., & Hardy, J. (1996). Physicochemical and Functional Properties of Flours Prepared from Common Beans and Green Mung Beans. J. Agric. Food. Chem. 44: 3029-3032.
Escalante-Aburto, A., Mariscal-Moreno, R. M., Santiago-Ramos, D., & Ponce-García, N. (2020). An update of different nixtamalization technologies, and its effects on chemical composition and nutritional value of corn tortillas. Food Rev. Int. 36: 456-498.
Espinosa-Ramírez, J., Rosell, C. M., Serna-Saldivar, S. O., & Pérez-Carrillo, E. (2020). Evaluation of the quality of nixtamalized maize flours for tortilla production with a new Mixolab protocol. Cereal Chem. 97: 527-539.
FDA. (2014). Gluten-Free Labeling of Foods. Available from: https://www.fda.gov/Food/GuidanceRegulation/
Gomez, M., McDonough, C., Rooney, L., & Waniska, R. (1989). Changes in Corn and Sorghum During Nixtamalization and Tortilla Baking. J. Food Sci. 54: 330-336.
Gomez, M. H., Lee, J., McDonough, C. M., Waniska, R. D., & Rooney, L. W. (1992). Corn starch changes during tortilla and tortilla chip processing. Cereal Chem. 69: 275-279.
Gutiérrez-Cortez, E., Rojas-Molina, I., Rojas, A., Arjona, J., Cornejo-Villegas, M., Zepeda-Benítez, Y., Velázquez-Hernández, R., Ibarra-Alvarado, C., & Rodríguez-García, M. (2010). Microstructural changes in the maize kernel pericarp during cooking stage in nixtamalization process. J Cereal Sci. 51: 81-88.
Haraszi, R., Chassaigne, H., Maquet, A., & Ulberth, F. (2011). Analytical methods for detection of gluten in food—method developments in support of food labeling legislation. J. AOAC Int. 94: 1006-1025.
Hernandez-chavez, j. f., Guemes-vera, n., Olguin-pacheco, m., Osorio-diaz, p., Bello-perez, l. a., & Totosaus-sanchez, a. (2019). Effect of lupin flour incorporation of mechanical properties of corn flour tortillas. Food Sci. Technol. 39: 704-710.
Hughes, J. S. (1991). Potential contribution of dry bean dietary fiber to health. Food Technol (USA). 45: 122-124.
Jiang, Y., Zhang, M., Lin, S., & Cheng, S. (2018). Contribution of specific amino acid and secondary structure to the antioxidant property of corn gluten proteins. Food Res. Int. 105: 836-844.
Kumari, P. V., & Sangeetha, N. (2017). Nutritional significance of cereals and legumes based food mix-A review. Int J Agric Life Sci. 3: 115-122.
Larkins, B. A. (2019). Proteins of the Kernel. Elsevier.
Llorens-Ivorra, C., Arroyo-Bañuls, I., Quiles-Izquierdo, J., & Richart-Martínez, M. (2019). Evaluation of the nutritional balance of school menus in the Valencian Community (Spain) using a test. Gac Sanit. 32: 533-538.
Méndez-Albores, A., Martínez-Morquecho, R., Moreno-Martínez, E., & Vázquez-Durán, A. (2012). Technological properties of maize tortillas produced by microwave nixtamalization with variable alkalinity. Afr J Biotechnol. 11: 15178-15187.
Millar, K. A., Gallagher, E., Burke, R., McCarthy, S., & Barry-Ryan, C. (2019). Proximate composition and anti-nutritional factors of fava-bean (Vicia faba), green-pea and yellow-pea (Pisum sativum) flour. J Food Compos Anal. 82: 103233.
Pérez, L. A. B., Díaz, P. O., Acevedo, E. A., Santiago, C. N., & López, O. P. (2002). Chemical, physicochemical and rheological properties of nixtamalized corn flour and dough. Agrociencia. 36: 319-328.
Rangel-Meza, E., Munoz Orozco, A., Vázquez-Carrillo, G., Cuevas-Sánchez, J., Merino-Castillo, J., & Miranda-Colin, S. (2004). Alkaline cooking, preparation and quality of corn tortilla from Ecatlán, Puebla, México. Agrociencia. 38: 53-61.
Reyes-Moreno, C., Ayala-Rodríguez, A. E., Milán-Carrillo, J., Mora-Rochín, S., López-Valenzuela, J. A., Valdez-Ortiz, A., Paredes-López, O., & Gutiérrez-Dorado, R. (2013). Production of nixtamalized flour and tortillas from amarantin transgenic maize lime-cooked in a thermoplastic extruder. J Cereal Sci. 58: 465-471.
Rios, M. J. B. L., Damasceno-Silva, K. J., Moreira-Araújo, R. S. D. R., Figueiredo, E. A. T. D., Rocha, M. D. M., & Hashimoto, J. M. (2018). Chemical, Granulometric and Technological Characteristics of Whole Flours from Commercial Cultivars of Cowpea. Revista Caatinga. 31: 217-224.
Rojas‐Molina, I., Gutierrez‐Cortez, E., Palacios‐Fonseca, A., Baños, L., Pons‐Hernandez, J., Guzmán‐Maldonado, S., Pineda‐Gomez, P., & Rodríguez, M. (2007). Study of structural and thermal changes in endosperm of quality protein maize during traditional nixtamalization process. Cereal Chem. 84: 304-312.
Ruiz-Gutiérrez, M. G., Quintero-Ramos, A., Meléndez-Pizarro, C. O., Talamás-Abbud, R., Barnard, J., Márquez-Meléndez, R., & Lardizábal-Gutiérrez, D. (2012). Nixtamalization in two steps with different calcium salts and the relationship with chemical, texture and thermal properties in masa and tortilla. J. Food Process Eng. 35: 772-783.
Salamanca-Bautista, G., Delgado-Alvarado, A., Herrera-Cabrera, B., Mendoza-Castillo, M., & Conde-Martínez, V. (2018). Variation in grain size and starch yield in cultivars of vicia faba l. Guía para autores AGRO. 11: 67-72.
Topete-Betancourt, A., Figueroa, J., Sanchez, E. M., Arámbula-Villa, G., & Pérez-Robles, J. (2020). Evaluation of the mechanism of oil uptake and water loss during deep-fat frying of tortilla chips. Rev Mex Ing Quim. 19: 409-422.
Vaca-García, V. M., Martínez-Rueda, C. G., Mariezcurrena-Berasain, M. D., & Dominguez-Lopez, A. (2011). Functional properties of tortillas with triticale flour as a partial substitute of nixtamalized corn flour. LWT - Food Sci Technol. 44: 1383-1387.
Waliszewski, K. N., Pardio, V., & Carreon, E. (2002). Physicochemical and Sensory Properties of Corn Tortillas Made from Nixtamalized Corn Flour Fortified with Spent Soymilk Residue (okara). J. Food Sci. 67: 3194-3197.
Wieser, H., Antes, S., & Seilmeier, W. (1998). Quantitative Determination of Gluten Protein Types in Wheat Flour by Reversed-Phase High-Performance Liquid Chromatography. Cereal Chem. 75: 644-650.
Statistics
178 Views | 223 Downloads
How to Cite
Salazar, D., M. Rodas, and M. Arancibia. “Production of Tortillas from Nixtamalized Corn Flour Enriched With Andean Crops Flours: Faba-Bean (Vicia Faba) and White-Bean (Phaseolus Vulgaris)”. Emirates Journal of Food and Agriculture, Vol. 32, no. 10, Nov. 2020, pp. 731-8, doi:https://doi.org/10.9755/ejfa.2020.v32.i10.2179. Accessed 23 May 2022.
Section
Research Article