Nutritional and techno-functional properties of monofloral bee-collected sunflower (Helianthus annuus L.) pollen

Authors

  • Aleksandar Ž. Kostić University of Belgrade, Faculty of Agriculture, Chair of Chemistry and Biochemistry, Nemanjina 6, 11080 Belgrade, Serbia
  • Danijel D. Milinčić University of Belgrade, Faculty of Agriculture, Chair of Chemistry and Biochemistry, Nemanjina 6, 11080 Belgrade, Serbia
  • Bojana D. Špirović Trifunović University of Belgrade, Faculty of Agriculture, Chair of Pesticides and Herbology, Nemanjina 6, 11080 Belgrade, Serbia
  • Sladjana P. Stanojević University of Belgrade, Faculty of Agriculture, Chair of Chemistry and Biochemistry, Nemanjina 6, 11080 Belgrade, Serbia
  • Steva Lević University of Belgrade, Faculty of Agriculture, Chair of Chemistry and Biochemistry, Nemanjina 6, 11080 Belgrade, Serbia
  • Nebojša Nedić University of Belgrade, Faculty of Agriculture, Chair of Breeding and Reproduction of Domestic and Bred Animals, Nemanjina 6, 11080 Belgrade, Serbia
  • Viktor Nedović University of Belgrade, Faculty of Agriculture, Chair of Chemistry and Biochemistry, Nemanjina 6, 11080 Belgrade, Serbia
  • Živoslav Lj. Tešić University of Belgrade, Faculty of Chemistry, Chair of Analytical Chemistry, Studentski Trg 12-16, 11000 Belgrade, Serbia
  • Mirjana B. Pešić University of Belgrade, Faculty of Agriculture, Chair of Chemistry and Biochemistry, Nemanjina 6, 11080 Belgrade, Serbia

DOI:

https://doi.org/10.9755/ejfa.2020.v32.i11.2188

Abstract

The aim of this study was to examine nutritional (total lipid, carbohydrate, protein and ash content, fatty acids and protein profile) and techno-functional properties of monofloral bee-collected sunflower pollen (Helianthus annuus L.). The content of water, total protein, carbohydrate, lipid and ash was 24.99, 14.36, 82.01, 1.62 and 2.01 g/100g DW, respectively, with the total energy value of 400.06 kcal/100 g DW. The fatty acid profile revealed the presence of five fatty acids with the stearic acid as dominant one (31.4%) followed by α-linoleic (20.7%), pentadecanoic (18.2%), heneicosanoic (17.1%) and palmitic (12.5%) acids. FTIR analysis of bee pollen grains confirmed the presence of the main pollen chemical constituents such as proteins, water, carbohydrates and lipids, but also the presence of sporopollenin and polyphenols. Raman spectroscopy analysis indicated that the surface of pollen grains was rich in carotenoids. Low protein (3.64 g/100g DW) but high carbohydrate (77.09 g/100 g DW) solubility of bee pollen was observed. The good emulsifying properties (ESI, 19.98 min; EAI, 80.54 m2/g) and excellent oil (2.43 g/g DW) but poor water (0.87 g/g DW) absorption capacities were also registered. On the other hand, the sunflower bee pollen did not show foaming properties. These findings indicate to its applicability as useful nutritional, lipophilic and anti-foaming food ingredients.

Downloads

Download data is not yet available.

References

Anjos, O. A. J. A. Santos, T. Dias, and T. M. Estevinho. 2017. Application of FTIR-ATR spectroscopy on the bee pollen characterization. J. Apic. Res. 56: 210-218. doi: 10.1080/00218839.2017.1289657
Avni, D., H. P. Hedriksma, A. Dag, Z. Uni, and S. Shafir. 2014. Nutritional aspects of honey bee-collected pollen and constraints on colony development in the eastern Mediteranean. J. Insect Physiol. 69: 65-73. doi: 10.1016/j.jinsphys.2014.07.001
Barać, M., S. Čabrilo, M. Pešić, S. Stanojević, S. Žilić, O. Maćej, and N. Ristić. 2010. Profile nad functional properties of seed proteins from six pea (Pisum sativum) genotypes. Int. J. Mol. Sci. 11: 4973-4990. doi: 10.3390/ijms11124973
Barać, M., S. Čabrilo, S. Stanojević, M. Pešić, M. Pavlićević, B. Zlatković, and M. Janković. 2012. Functional properties of protein hydrolysates from pea (Pisum sativum) seeds. Int. J. Food Sci. Technol. 47: 1457-1467. doi: 10.1111/j.1365-2621.2012.02993.x
Barać, M. B., M. B. Pešić, S. P. Stanojević, A. Ž. Kostić, and V. Bivolarević. 2015. Comparative study of the functional properties of three legume seed isloates: adzuki, pea and soy bean. J. Food Sci. Technol. 52: 2779-2787. doi: 10.1007/s13197-014-1298-6
Belina-Aldemita, M. D., C. Opper, M. Schreiner, and S. D’Amico. 2019. Nutritional composition of pot-pollen produced by stingless bees (Tetragonula biroi Friese) from the Philippines. J. Food Compos. Anal. 82: 103215. doi: 10.1016/j.jfca.2019.04.003
Bogdanov, S. 2017. Pollen; Collection, Harvest, Composition, Quality. In The Pollen Book e-edition, pp 1-13, Muehlethurnen, Switzerland, available online: www.bee-hexagon.net
Boye, J., F. Zare, and A. Pletch. 2010. Pulse proteins: Processing, characterization, functional properties and applications in food and feed. Food Res. Int. 43: 414-431. doi: 10.1016/j.foodres.2009.09.003
Buta, E., M. Cantor, R. Ştefan, R. Pop, I. Jr. Mitre, M. Buta, and R. E. Sestraş. 2015. FT-IR characterization of pollen biochemistry, viability, and germination capacity in Saintpaulia H. Wendl. genotypes. J. Spectrosc. 2015: 706370. doi: 10.1155/2015/706370
Campos, M. G. R., S. Bogdanov, L. B. Almeida-Muradian, T. Szczesna, Y. Mancebo, C. Frigerio, and F. Ferreira. 2008. Pollen composition and standardisation of analytical methods. J. Apic. Res. 47: 154-161. doi: 10.1080/00218839.2008.11101443
Conti, I., P. Medrzycki, C. Argenti, M. Meloni, V. Vecchione, M. Boi, and M. G. Mariotti. 2016. Sugar and protein content in different monofloral pollens - buildings a database. B. Insectol. 69: 318-320.
Culbertson, J. F. 2005. Food protein functionality. In Handbook of Food Science, Technology, and Engineering, Vol. 4 (Chapter 7), 1st Edition, CRC Press, Boca Roton, Florida, USA.
Dalgleish, D. G. 1997. Adsorption of protein and the stability of emulsions - review. Trend. Food Sci. Technol. 8: 1-6. doi: 10.1016/S0924-2244(97)01001-7
Depciuch, J., I. Kasprzyk, E. Roga, and M. Parlinska-Wojtan. 2016. Analysis of morphological and molecular composition changes in allergenic Artemisia vulgaris L. pollen under traffic pollution using SEM and FTIR spectroscopy. Environ. Sci. Pollut. Res. 23: 23203-23214. doi: 10.1007/s11356-016-7554-8
Dobson, H. E. M. 1998. Survey of pollen and pollenkitt lipids – chemical cues to flower visitors?. Am. J. Bot. 75: 170-182. doi: 10.1002/j.1537-2197.1988.tb13429.x
Evans, M., I. Ratcliffe, and P. A. Williams. 2013. Emulsion stabilisation using polysaccharide-protein complexes. Curr. Opin. Colloid In. 18: 272-282. doi: 10.1016/j.cocis.2013.04.004
Fernandez-Quintela, A., M. T. Macarulla, A. S. Del Bario, and J. A. Martinez. 1997. Composition and functional properties of protein isolates obtained from commercial legumes grown in northern Spain. Plant Food. Hum. Nutr. 51: 331-341. doi: 10.1023/a:1007936930354
Foegeding, E. A., and J. P. Davis. 2011. Food protein functionality: A comprehensive approach. Food Hydrocolloid. 25: 1853-1864. doi: 10.1016/j.foodhyd.2011.05.008
GB/T 19330-2003. Product of designations of origin or geographical indication-Raohe (Northeast China black bee) honey, royal jelly, propolis, bee pollen. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Beijing, China (In Chinese).
Gould, J. M., S. Furse, and B. Wolf. 2016. The role of endogenous lipids in the emulsifying properties of cocoa. Front. Chem. 4: 11. doi: 10.3389/fchem.2016.00011
Guedes, A., H. Ribeiro, M. Fernández-González, M. J. Aira, and I. Abreu. 2014. Pollen Raman spectra data base: Application to the identification of airborne pollen. Talanta 119: 473-478. doi: 10.1016/j.talanta.2013.11.046
Ischebeck, T. 2016. Lipids in pollen – they are different. Biochim. Biophys. Acta 1861: 1315-1328. doi: 10.1016/j.bbalip.2016.03.023
Karakashev, S. I., and M. V. Grozdanova. 2012. Foams and antifoams. Adv. Colloid Interfac. 176-177: 1-17. doi: 10.1016/j.cis.2012.04.001
Kieliszek, M., K. Piwowarek, A. M. Kot, S. Błažejak, A. Chlebowska-Śmigiel, I. Wolska. 2018. Pollen and bee bread as new health-oriented products: A review. Trend Food Sci. Technol., 71, 170-180. doi: 10.1016/j.tifs.2017.10.021
Kinsella, J. E., and N. Melachouris. 1976. Functional properties of proteins in foods: A survey. Crit. Rev. Food Sci. 7: 219-280. doi: 10.1080/10408397609527208
Kostić, A. Ž., M. B. Barać, S. P. Stanojević, D. M. Milojković-Opsenica, Ž. Lj. Tešić, B. Šikoparija, P. Radišić, M. Prentović, and M. B. Pešić. 2015b. Physicochemical composition and techno-functional properties of bee pollen collected in Serbia. LWT- Food Sci. Technol. 62: 301-309. doi: 10.1016/J.LWT.2015.01.031
Kostić, A. Ž., M. P. Mačukanović-Jocić, B. D. Špirović Trifunović, I. Ž. Vukašinović, V. B. Pavlović, and M. B. Pešić. 2017. Fatty acids of maize pollen – Quantification, nutritional and morphological evaluation. J. Cereal Sci. 77: 180-185. doi: 10.1016/j.jcs.2017.08.004
Kostić, A. Ž., M. B. Pešić, M. D. Mosić, B. P. Dojčinović, M. M. Natić, and J. Đ. Trifković. 2015a. Mineral content of bee pollen from Serbia. Arch. Ind. Hyg. Toxicol. 66: 251-258. doi: 10.1515/aiht-2015-66-2630
Krell, R. 1996. Value-added products from beekeeping. FAO Agric. Service Bul. 124: 87-113. Retrieved from: http://www.apiterapia.biz/pliki/value_added_products.pdf
Liang, M., P. Zhang, X. Shu, C. Liu, and J. Shu. 2013. Characterization of pollen by MALDI-TOF lipid profiling. Int. J. Mass Spectro. 334: 13-18. doi: 10.1016/j.ijms.2012.09.007
Nicolson, S. W., and H. Human. 2013. Chemical composition of the ‘low quality’ pollen of sunflower (Helianthus annuus, Asteraceae). Apidologie 44: 144-152. doi: 10.1007/s13592-012-0166-5
O.G.R.S. 2013. Rulebook on quality and other requirements for honey, other bee products and products based on honey and other bee products. Official Gazette of Republic of Serbia No. 45: paragraph 31 (In Serbian).
Peredes-Lopez, O., C. Ordorica-Falomir, and M. R. Olivares-Vazquez. 1991. Chickpea protein isolates: Physicochemical, functional and nutritional characterization. J. Food Sci. 56: 726-729. doi: 10.1111/j.1365-2621.1991.tb05367.x
Phillips, L. G., J. M. Davis, and J. E. Kinsella. 1989. The effects of various milk proteins on the foaming properties of egg white. Food Hydrocolloid. 3: 163-174. doi: 10.1016/S0268-005X(89)80001-3
Schulte, F., J. Lingott, U. Panne, and J. Kneipp. 2008. Chemical characterization and classification of pollen. Anal. Chem. 80: 9551-9556. doi: 10.1021/ac801791a
Schulz, H., and M. Baranska. 2007. Identification and quantification of valuable plant substances by IR and Raman spectroscopy. Vib. Spectrosc. 43: 13-25. doi: 10.1016/j.vibspec.2006.06.001
Serra-Bonvehí, J., and R. Escolá Jordá, 1997. Nutrient composition and microbiological quality of honeybee collected pollen in Spain. J. Agric. Food Chem. 45: 725-732. doi: 10.1021/jf960265q
Taha, E. - K. A, S. Al-Kahtani, and R. Taha. 2019. Protein content and amino acids composition of bee-pollens from major floral sources in Al-Ahsa, eastern Saudi Arabia. Saudi J. Biol. Sci. 26: 232-237. doi: 10.1016/j.sjbs.2017.06.003
Thakur, M., and V. Nanda. 2019. Exploring the physical, functional, thermal, and textural properties of bee pollen from different botanical origins of India. J. Food Process Eng. 42: e12935. doi: 10.1111/jfpe.12935
Thakur, M., and V. Nanda. 2020. Composition and functionality of bee pollen: a review. Trend. Food Sci. Technol. 98, 82-106. doi: 10.1016/j.tifs.2020.02.001
Wang, J. C., and J. E. Kinsella. 1976. Functional properties of alfalfa leaf protein: Foaming. J. Food Sci 41: 498-501. doi: 10.1111/j.1365-2621.1976.tb00655.x
Wiercigroch, E., E. Szafraniec, K. Czamara, M. Z. Pacia, K. Majzner, K. Kochan, A. Kaczor, M. Baranska. 2017. Raman and infrared spectroscopy of carbohydrates: A review. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 185, 317-335. doi: 10.1016/j.saa.2017.05.045
Withnall, R., B. Z. Chowdhry, J. Silver, H. G. M. Edwards, and L. F. C. de Oliveira. 2003. Raman spectra of carotenoids in natural products. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 59: 2207-2212. doi: 10.1016/S1386-1425(03)00064-7
Wolters-Arts, M., W. M. Lush, and C. Mariani. 1998. Lipids are required for directional pollen-tube growth. Nature 392: 818-821. doi: 10.1038/33929
Zimmermann, B., and A. Kohler. 2014. Infrared spectroscopy of pollen identifies plant species and genus as well as environmental conditions. Plos One 9: e95417. doi: 10.1371/journal.pone.0095417
Zimmermann, B., M. Bağcioğlu, C. Sandt, and A. Kohler 2015. Vibrational microspectroscopy enables chemical characterization of single pollen grains as well as comparative analysis of plant species based on pollen ultrastructure. Planta 242: 1237-1250. doi: 10.1007/s00425-015-2380-7
Zinkl, G. M., and D. Preuss. 2000. Dissecting Arabidopsis pollen – stigma interactions reveals novel mechanisms that confer mating specifity. Ann. Bot. 85 (suppl. A): 15-21. doi: 10.1006/anbo.1999.1066

Published

2020-11-08

How to Cite

Kostić, A. Ž., D. D. Milinčić, B. D. Špirović Trifunović, S. P. Stanojević, S. Lević, N. Nedić, V. Nedović, Živoslav L. Tešić, and M. B. Pešić. “Nutritional and Techno-Functional Properties of Monofloral Bee-Collected Sunflower (Helianthus Annuus L.) Pollen”. Emirates Journal of Food and Agriculture, vol. 32, no. 11, Nov. 2020, pp. 768-77, doi:10.9755/ejfa.2020.v32.i11.2188.

Issue

Section

Research Article