Relationship Among Antibiotic Residues And Antibacterial Activity Of The Endemic Spurge Honey (Euphorbia Resinifera O. Berg) From Morocco

Authors

  • Rania Benjamaa Hassan First University of Settat, Faculty of Sciences and Technologies, Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, 577, Settat, Morocco.
  • Abdelkarim Moujanni Hassan First University of Settat, Faculty of Sciences and Technologies, Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, 577, Settat, Morocco. ; National Office of Food Safety (ONSSA), Avenue Hadj Ahmed Cherkaoui, Agdal - Rabat – Maroc.
  • Anass Terrab Department of Plant Biology and Ecology, University of Seville, Ap. 1095, 41080 Sevilla, Spain.
  • Rabiaa Eddoha Hassan First University of Settat, Faculty of Sciences and Technologies, Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, 577, Settat, Morocco.
  • Maryam Benbachir Hassan First University of Settat, Faculty of Sciences and Technologies, Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, 577, Settat, Morocco.
  • Abderrahman Moujahid Hassan First University of Settat, Faculty of Sciences and Technologies, Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, 577, Settat, Morocco.
  • Boubker Nasser Hassan First University of Settat, Faculty of Sciences and Technologies, Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, 577, Settat, Morocco.
  • Sami Darkaoui Division of Pharmacy and Veterinary Inputs, Control and Expertise Department, ONSSA, Rabat, Morocco.
  • Nadia Zyate Division of Pharmacy and Veterinary Inputs, Control and Expertise Department, ONSSA, Rabat, Morocco.
  • Ali Talmi Division of Pharmacy and Veterinary Inputs, Control and Expertise Department, ONSSA, Rabat, Morocco.
  • Abdel Khalid Essamadi Hassan First University of Settat, Faculty of Sciences and Technologies, Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, 577, Settat, Morocco.

DOI:

https://doi.org/10.9755/ejfa.2020.v32.i11.2190

Abstract

Antibiotic-resistant bacteria continue to be of major health concern worldwide. In recent years, several reports and scientific articles claim the contamination of honey by antibiotics, detectable concentrations of antibiotic residues in honey are illegal. They, may cause hypersensitivity or resistance to drug therapy in humans, and are perceived by consumers as undesirable. In this sense, the purpose of this work was to examine the antibacterial activity of the Euphorbia resinifera (E. resinifera) honey against Escherichia coli and Staphylococcus aureus in vitro using the well-agar diffusion assay followed by dilution range to obtain more precise minimum inhibitory concentration values. The second aim is to evaluate the presence of antibiotics in honey using a screening test: Evidence InvestigatorTM, an immuno-enzymatic method for detection of 27 antibiotic residues followed by a liquid chromatography-tandem mass spectrometry (LC-MS/MS) for confirmation of suspect samples; in order to assess the relationship between the presence of antibiotic residues and the antibacterial activity of honey. In this study, a total of 37 E. resinifera honey samples were analyzed. The results show that all samples of honey inhibited the growth of bacteria at the dilutions at 50% (v/v); the highest inhibition zone (25.98 ± 0.11 mm) was recorded from sample 5 for Staphylococcus aureus and (13.84 ± 1.10 mm) in sample 17 for Escherichia coli and that 50% (v/v) dilutions showed significant antibacterial effect compared to other dilutions (6.25, 12.5, 25% (v/v)). In all samples, there were no antibiotic residues detected except for one showing the detection of Trimethoprim at 6.48 µg kg-1. Our research is one of the first studies that relate the he relationship between the presence of antibiotic residues and the antibacterial activity of Euphorbia resinifera honey and showed that the antibacterial activity of honey might be due to the high osmotic nature, a low pH, its content of phenolic compounds and hydrogen peroxide and also to its content of methylglyoxal.

Downloads

Download data is not yet available.

References

AFNOR, 2014. Liste des méthodes utilisées dans le champ des missions du Laboratoire National de Référence de l ’ Anses Résidus de Médicaments Vétérinaires et Colorants 3–6.
Agence nationale de sécurité sanitaire de l’alimentation de l’environnement et du travail (ANSES), A., 2019. Liste des méthodes utilisées dans le champ des missions du Laboratoire National de Référence de l’Anses. Résidus de Médicaments Vétérinaires et Colorants.
Aksem, A. 2019. Simultaneous screening of antibiotic residues in honey by biochip multi-array technology. Med. Weter. 75, 567–571. https://doi.org/10.21521/mw.6240
Anthimidou, E. and D. Mossialos. 2013. Antibacterial activity of greek and cypriot honeys against staphylococcus aureus and pseudomonas aeruginosa in comparison to manuka honey. J. Med. Food 16, 42–47. https://doi.org/10.1089/jmf.2012.0042
Atrott, J. and T. Henle. 2009. Methylglyoxal in Manuka Honey – Correlation with Antibacterial Properties. Czech J. Food Sci. 27, S163–S165. https://doi.org/10.17221/911-CJFS
Baggio, A., A. Gallina, C. Benetti and F. Mutinelli. 2009. Residues of antibacterial drugs in honey from the italian market. Food Addit. Contam. Part B Surveill. 2, 52–58. https://doi.org/10.1080/02652030902897721
Bang, L.M., C. Buntting and P. Molan. 2003.The effect of dilution on the rate of hydrogen peroxide production in honey and its implications for wound healing. J Altern Complement Med 9: 267–273
Barbançon, J.M.,J. Vandame and B. Ordonneau. 2013. Evaluation de l’efficacité des médicaments de lutte contre Varroa destructor et impacts sur les protocoles de traitement. La Santé l’Abeille 254, 137–146.
Bargańska, Z., J. Namieśnik and M. Ślebioda. 2011. Determination of antibiotic residues in honey. TrAC - Trends Anal. Chem. 30, 1035–1041. https://doi.org/10.1016/j.trac.2011.02.014
Barrasso, R., E. Bonerba, A.E. Savarino, E. Ceci, G. Bozzo and G. Tantillo. 2019. Simultaneous quantitative detection of six families of antibiotics in honey using a biochip multi-array technology. Vet. Sci. 6, 1–10. https://doi.org/10.3390/vetsci6010001
Basualdo, C. 2007. Comparison of the antibacterial activity of honey from different provenance against bacteria usually isolated from skin wounds 124, 375–381. https://doi.org/10.1016/j.vetmic.2007.04.039
Biluca, FC., F. Braghini, L.V. Gonzaga, A.C. Costa, and R. Fett.2016. Physicochemical profiles, minerals and bioactive compounds of stingless bee honey (Meliponinae). J. Food Compos Anal; 50:61–9.
Bogdanov, S. 2006. Contaminants of bee products. Apidologie 37, 1–18. https://doi.org/10.1051/apido:2005043
Bohm, D.A., C.S. Stachel and P. Gowik. 2012. Validation of a multi-residue method for the determination of several antibiotic groups in honey by LC-MS/MS. Anal. Bioanal. Chem. 403, 2943–2953. https://doi.org/10.1007/s00216-012-5868-z
Chaibi, A., L.H. Ababouch and F.F . Busta. 1996. Inhibition of bacterial spores and vegetative cells by glycerides. J. Food Prot. 59, 716–722. https://doi.org/10.4315/0362-028X-59.7.716
Chakir, A., A. Romane, G.L. Marcazzan and P. Ferrazzi. 2016. Physicochemical properties of some honeys produced from different plants in Morocco. Arab. J. Chem. 9, S946–S954. https://doi.org/10.1016/j.arabjc.2011.10.013
Codex Alimentarius Commission (CAC). 2018. Maximum residue limits (MRLs) and risk management recommendations (RMRs) for residues of veterinary drugs in foods. CX/MRL 2-2018.
Community Reference Laboratories (CRL). 2007. CRL Guidance paper of 7th December 2007. CRLs view on state of the art analytical methods for residue control plans
Coniglio, M.A., G.Faro, G. Giammanco,S. Pignato and M. Marranzano. 2013. Antimicrobial potential of sicilian honeys against commensal escherichia coli and pathogenic salmonella serovar infantis. J. Prev. Med. Hyg. 54, 223–226. https://doi.org/10.15167/2421-4248/jpmh2013.54.4.416
Cooper, R. A., P.C. Molan and K.G. Harding. 1999. Antibacterial activity of honey against strains of Staphylococcus aureus from infected wounds. Journal of the royal society of medicine, 92(6), 283-285.
Dżugan, M., D. Grabek-Lejko, S. Swacha, M. Tomczyk, S. Bednarska and I. Kapusta. 2020. Physicochemical quality parameters, antibacterial properties and cellular antioxidant activity of Polish buckwheat honey. Food Biosci. 34, 100538. https://doi.org/10.1016/j.fbio.2020.100538
Estevinho, L., A.P. Pereira, L. Moreira, L.G Dias, L. G and E. Pereira. 2008. Antioxidant and antimicrobial effects of phenolic compounds extracts of Northeast Portugal honey. Food and Chemical Toxicology, 46(12), 3774-3779
European Commission. 2010. Commission Regulation (EU) No 37/2010 of 22 December 2009 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin. Off. J. Eur. Communities, L 15/1.
European Commission. 2002. Commission Decision 2002/657 of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and interpretation of results. Off. J. Eur. Communities, L 221/9.
FAO/WHO. 2018. Maximum Residue Limits (MRLs) and Risk Management Recommendations (RMRs) For Residues of veterinary drugs in Foods. Codex Aliment. Int. Food Stand. 2, 2–26.
Food and Drug Administration (FDA), F. 2003. Tolerances for residues of new animal drugs in food]. CFR.
Gaudin, V. 2017. Advances in biosensor development for the screening of antibiotic residues in food products of animal origin – A comprehensive review. Biosens. Bioelectron. 90, 363–377. https://doi.org/10.1016/j.bios.2016.12.005
Gaudin, V., A. De Courville, C. Hedou, A. Rault, S.E. Diomandé, C. Creff-Froger and E. Verdon. 2013. Evaluation and validation of two microbiological tests for screening antibiotic residues in honey according to the European guideline for the validation of screening methods. Food Addit. Contam. Part A 30, 234–243. https://doi.org/10.1080/19440049.2012.738367
Gaudin, V., C. Hedou, C. Soumet and E.Verdon. 2015. Evaluation and validation of a biochip multi-array technology for the screening of 14 sulphonamide and trimethoprim residues in honey according to the European guideline for the validation of screening methods for veterinary medicines. Food Agric. Immunol. 26, 477–495. https://doi.org/10.1080/09540105.2014.968767
Gaudin, V., C. Hedou, C. Soumet and E. Verdon. 2014. Evaluation and validation of biochip multi-array technology for the screening of six families of antibiotics in honey according to the European guideline for the validation of screening methods for residues of veterinary medicines. Food Addit. Contam. - Part A Chem. Anal. Control. Expo. Risk Assess. 31, 1699–1711. https://doi.org/10.1080/19440049.2014.952784
Ihitassen, A. 2019. Melissopalynology and Climatic Variation: Case of Honey Attributed To Euphorbia Resinifera, Region of Azilal (Morocco). Int. J. Adv. Res. 7, 702–725. https://doi.org/10.21474/ijar01/9273
Jakšić, S.M., R.D. Ratajac, N.B. Prica, J.B., Apić, D.B. Ljubojević, M.Z. Žekić Stošić and M.M. Živkov Baloš. 2018. Methods of Determination of Antibiotic Residues in Honey. J. Anal. Chem. 73, 317–324. https://doi.org/10.1134/S1061934818040044
Jin, Y., J. Zhang, W. Zhao, W. Zhang, L. Wang, J. Zhou AND Y. Li. 2017. Development and validation of a multiclass method for the quantification of veterinary drug residues in honey and royal jelly by liquid chromatography–tandem mass spectrometry. Food Chem. 221, 1298–1307. https://doi.org/10.1016/j.foodchem.2016.11.026
Kaufmann, A., S. Roth, B. Ryser, M. Widmer and D. Guggisberg. 2002. Quantitative LC/MS-MS determination of sulfonamides and some other antibiotics in honey. J. AOAC Int. 85, 853–860. https://doi.org/10.1093/jaoac/85.4.853
Khan, R., B. Islam, M. Akram, S. Shakil, A. Ahmad, S.M. Ali, M. Siddiqui and A.U. Khan. 2009. Antimicrobial activity of five herbal extracts against Multi Drug Resistant (MDR) strains of bacteria and fungus of clinical origin. Molecules 14, 586–597. https://doi.org/10.3390/molecules14020586
Khiati, B., S. Bacha, M. Ahmed, S. Aissat, A. Meslem and N. Djebli. 2012. Wound Care with Euphorbia Honey after Nucleation: A Case Report. Clin. Microbiol. Open Access 2, 1000129. https://doi.org/10.4172/2327-5073.1000129
Korkmaz, S.D., O. Kuplulu, G.I. Cil and E. Akyuz. 2017. Detection of sulfonamide and tetracycline antibiotic residues in Turkish pine honey. Int. J. Food Prop. 20, S50–S55. https://doi.org/10.1080/10942912.2017.1288135
Kumar, A., J.P.S .Gill, J.S. Bedi, P.K. Chhuneja and A. Kumar. 2020. Determination of antibiotic residues in Indian honeys and assessment of potential risks to consumers. J. Apic. Res. 59, 25–34. https://doi.org/10.1080/00218839.2019.1677000
Laurentie, M., C. Creff-Froger and V. Gaudin. 2002. Surveillance des résidus d’antibiotiques. Apport des méthodes de spectrométrie de masse à l’identification des contaminants. Bull. Acad. Vet. Fr. 283. https://doi.org/10.4267/2042/61544
Liang, Y., L. Zhang, Y. Qu, H. Li and B. Shi. 2020. Antibacterial activity of buckwheat honey added with ferrous lactate against Pseudomonas aeruginosa. LWT 117, 108624. https://doi.org/10.1016/j.lwt.2019.108624
Louppis, A.P., M.G. Kontominas and C. Papastephanou. 2017. Determination of Antibiotic Residues in Honey by High-Performance Liquid Chromatography with Electronspray Ionization Tandem Mass Spectrometry. Food Anal. Methods 10, 3385–3397. https://doi.org/10.1007/s12161-017-0899-x
Malanovic, N and K. Lohner. 2016. Antimicrobial peptides targeting Gram-positive bacteria, Pharmaceuticals. https://doi.org/10.3390/ph9030059
Matzen, R.D., J. Zinck Leth-Espensen, T. Jansson, D.S. Nielsen, M.N. Lund and S. Matzen. 2018. The Antibacterial Effect In Vitro of Honey Derived from Various Danish Flora. Dermatol. Res. Pract. 2018, 1–10. https://doi.org/10.1155/2018/7021713
Ministry of Agriculture and Fisheries of Morocco (MAF). Approval order no.1721-12 of 18 April 2012, R. the P.& quot, 2012. Euphorbia Honey of “Tadla-Azilal” and homologation of its specifications [WWW Document]. Moroccan Off. Bull. n° 6074. p. 2524.
Moujanni, A., L. Partida, A.K. Essamadi, D. Hernanz, F.J. Heredia and A. , Terrab. 2018. Physicochemical characterization of unique unifloral honey: Euphorbia resinifera. CyTA - J. Food 16, 27–35. https://doi.org/10.1080/19476337.2017.1333529
Moujanni, A., A. Terrab, R. Eddoha, B. Nasser, M. Benbachir, N.E. Chaouqy, T. Bouzid and A.K. Essamadi. 2017. Microbiological quality of Moroccan labeled Euphorbia resinifera honey. J. Microbiol. Biotechnol. Food Sci. 6, 1188–1194. https://doi.org/10.15414/jmbfs.2017.6.5.1188-1194
Moujanni, A., A. Terrab, R. Eddoha, B. Nasser, M. Benbachir, M. Tannaoui, A. Zouaoui, and A.K. Essamadi. 2017. Quantification of heavy metals and pesticides residues in labeled Moroccan Euphorbia resinifera honey from Tadla-Azilal. J. Mater. Environ. Sci. 8, 1826–1836.
Nair, R and S. Chanda. 2006. Activity of some medicinal plants against certain pathogenic bacterial strains. Indian J. Pharmacol. 38, 142–144. https://doi.org/10.4103/0253-7613.24625
National office of Food Safety (ONSSA). 2019. Positive list of veterinary drugs authorized in Morocco
Ng, W.J and M.S. Lim. 2015. Anti-staphylococcal activity of Melaleuca honey. Southeast Asian J. Trop. Med. Public Health 46, 472–479.
Noaman, M., M. Faid and C. EL Adlouni. 2004. Antimicrobial Activities of Natural Honey from Aromatic and Medicinal Plants on Antibio-resistant Strains of Bacteria. Int. J. Agric. Biol. 6, 289–293.
O’Mahony, J., M. Moloney,R.I. McConnell, E.O. Benchikh, P. Lowry, A. Furey and M. Danaher. 2011. Simultaneous detection of four nitrofuran metabolites in honey using a multiplexing biochip screening assay. Biosens. Bioelectron. 26, 4076–4081. https://doi.org/10.1016/j.bios.2011.03.036
Olaitan, P.B., O.E. Adeleke and I.O. Ola. 2007. Honey: a reservoir for microorganisms and an inhibitory agent for microbes. Afr. Health Sci. 7, 159–165. https://doi.org/10.5555/afhs.2007.7.3.159
Patton, T., J. Barrett, J. Brennan and N. Moran. 2006. Use of a spectrophotometric bioassay for determination of microbial sensitivity to manuka honey. J. Microbiol. Methods 64, 84–95. https://doi.org/10.1016/j.mimet.2005.04.007
Popa, I.D., E.C . Schiriac and R. Cuciureanu. 2012. Multi-analytic detection of antibiotic residues in honey using a multiplexing biochip assay. Rev. Med. Chir. Soc. Med. Nat. Iasi 116, 324–329. https://doi.org/23077916
Reybroeck, W. 2003. Residues of antibiotics and sulphonamides in honey on the Belgian market. Apiacta 38, 23–30.
Roby, M.H.H., Abdelaliem, Y.F., Esmail, A.H.M., Mohdaly, A.A.A., Ramadan, M.F., 2020. Evaluation of Egyptian honeys and their floral origins: phenolic compounds, antioxidant activities, and antimicrobial characteristics. Environ. Sci. Pollut. Res. 27, 20748–20756. https://doi.org/10.1007/s11356-020-08586-7
Savarino, A.E., V. Terio, R. Barrasso, E. Ceci, S. Panseri, L.M. Chiesa and E. Bonerba. 2020. Occurrence of antibiotic residues in Apulian honey: potential risk of environmental pollution by antibiotics. Ital. J. Food Saf. 9, 8678. https://doi.org/10.4081/ijfs.2020.8678
Sheth, H.B., M.E. Stiles, P. Sporns, V.A. Yaylayan and N.H. Low. 1990. Reaction of Reducing Sugars with Sulfathiazole and Importance of This Reaction to Sulfonamide Residue Analysis Using Chromatographic, Colorimetric, Microbiological, or ELISA Methods. J. Agric. Food Chem. 38, 1125–1130. https://doi.org/10.1021/jf00094a047
Toldra, F and M. Reig. 2006. Methods for rapid detection of chemical and veterinary drug residues in animal foods. Trends Food Sci. Technol. 17, 482–489. https://doi.org/10.1016/j.tifs.2006.02.002
Velásquez, P., G. Montenegro, F. Leyton, L. Ascar, O. Ramirez and A. Giordano. 2020. Bioactive compounds and antibacterial properties of monofloral Ulmo honey. CYTA - J. Food 18, 11–19. https://doi.org/10.1080/19476337.2019.1701559
Vidal-Naquet, N.A.L. 2015. Honeybee Veterinary Medicine: Apis Mellifera L. 5M Publishing.
Wang, J. 2004. Determination of Five Macrolide Antibiotic Residues in Honey by LC-ESI-MS and LC-ESI-MS/MS. J. Agric. Food Chem. 52, 171–181. https://doi.org/10.1021/jf034823u
Wang, S., W. Yong, J. Liu, L. Zhang, Q. Chen and Y. Dong. 2014. Development of an indirect competitive assay-based aptasensor for highly sensitive detection of tetracycline residue in honey. Biosens. Bioelectron. 57, 192–198. https://doi.org/10.1016/j.bios.2014.02.032
Zhou, J., X. Xue, F. Chen, J. Zhang, Y. Li, L. Wu, L. Chen and J. Zhao. 2009. Simultaneous determination of seven fluoroquinolones in royal jelly by ultrasonicassisted extraction and liquid chromatography with fluorescence detection. J. Sep. Sci. 32, 955–964. https://doi.org/10.1002/jssc.200800545

Published

2020-11-08

How to Cite

Benjamaa, R., A. Moujanni, A. Terrab, R. Eddoha, M. Benbachir, A. Moujahid, B. Nasser, S. Darkaoui, N. Zyate, A. Talmi, and A. . K. Essamadi. “Relationship Among Antibiotic Residues And Antibacterial Activity Of The Endemic Spurge Honey (Euphorbia Resinifera O. Berg) From Morocco”. Emirates Journal of Food and Agriculture, vol. 32, no. 11, Nov. 2020, pp. 795-07, doi:10.9755/ejfa.2020.v32.i11.2190.

Issue

Section

Research Article