Determination of antioxidative and enzymatic activity in green and red lettuce cultivars affected by microbiological fertilisers and seasons

Authors

  • Milica Stojanović Faculty of Biofarming, Megatrend University, Bulevar maršala Tolbuhina 8, 11070 Belgrade, Serbia
  • Vuk Maksimović Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1a, 11000 Belgrade, Serbia
  • Dragosav Mutavdžić Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1a, 11000 Belgrade, Serbia
  • Ivana Petrović Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
  • Zorica Jovanović Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
  • Slađana Savić Faculty of Biofarming, Megatrend University, Bulevar maršala Tolbuhina 8, 11070 Belgrade, Serbia
  • Jelena Dragišić Maksimović Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1a, 11000 Belgrade, Serbia

DOI:

https://doi.org/10.9755/ejfa.2021.v33.i2.2354

Abstract

Lettuce is a worldwide grown leafy vegetable rich in phytochemicals which are essential in human diet. The aim of this study was to examine the effect of genotype, microbiological fertilisers and season on the rosette fresh weight and components of antioxidant activity. Six cultivars (green ‘Kiribati’, ‘Aleppo’, ‘Aquino’ and red ‘Murai’, ‘Carmesi’, ‘Gaugin’) were grown in a greenhouse experiment during three consecutive seasons (autumn, winter and spring) with application of microbiological fertilisers (EM Aktiv, Vital Tricho and their combination). Green cultivars showed higher fresh weight than red in spring and winter. Green cultivar ‘Aleppo’ showed the highest fresh weight in control during spring. Microbiological fertilisers led to increased fresh weight in autumn. Mainly, red cultivars showed higher quality parameters compared to green (total antioxidant capacity, total phenolic content, total carotenoids and POD activity). Red cultivar ‘Carmesi’ showed the highest total antioxidant capacity, total carotenoids, and total phenolic content in winter with combination of fertilisers, Vital Tricho, and in control. In spring, ‘Carmesi’ and ‘Gaugin’ showed the highest POD activity with Vital Tricho, and combination of fertilisers. The present study suggested that genotype, fertilisers and season jointly influenced quantity and quality parameters with emphasis on Vital Tricho, and/or combination of fertilisers.

Downloads

Download data is not yet available.

References

Ahmad, P., A. Hashem, E. F. Abd-Allah, A. A. Alqarawi, R. John, D. Egamberdieva and S. Gucel. 2015. Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L.) through antioxidative defense system. Front. Plant Sci. 6: 868.
Babalola, O. O. 2010. Beneficial bacteria of agricultural importance. Biotechnol. Lett. 32: 1559-1570.
Bal, U. and S. Altintas. 2006. Application of the antagonistic fungus Trichoderma harzianum (TrichoFlow WPTM) to root zone increases yield of bell peppers grown in soil. Biol. Agric. Hortic. 24: 149-163.
Barickman, T. C., W. L. Sublett, C. Miles, D. Crow and E. Scheenstra. 2018. Lettuce biomass accumulation and phytonutrient concentrations are influenced by genotype, N application rate and location. Horticulturae 4: 12.
Baslam, M., I. Pascual, M. Sánchez-Díaz, J. Erro, J. M. García-Mina and N. Goicoechea. 2011. Improvement of nutritional quality of greenhouse-grown lettuce by arbuscular mycorrhizal fungi is conditioned by the source of phosphorus nutrition. J. Agric. Food Chem. 59: 11129-11140.
Boo, H. O., B. G. Heo, S. Gorinstein and S. U. Chon. 2011. Positive effects of temperature and growth conditions on enzymatic and antioxidant status in lettuce plants. Plant Sci. 181: 479-484.
Böhm, V., N. L. Puspitasari-Nienaber, M. G. Ferruzzi and S. J. Schwartz. 2002. Trolox equivalent antioxidant capacity of different geometrical isomers of α-carotene, β-carotene, lycopene and zeaxanthin. J. Agric. Food Chem. 50: 221-226.
Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
Chon, S. U., H. O. Boo, B. G. Heo and S. Gorinstein. 2012. Anthocyanin content and the activities of polyphenol oxidase, peroxidase and phenylalanine ammonia-lyase in lettuce cultivars. Int. J. Food Sci. Nutr. 63: 45-48.
Cooperstone, J. L. and S. J. Schwartz. 2016. Recent insights into health benefits of carotenoids. Handbook on Natural Pigments in Food and Beverages. Woodhead Publishing, (pp. 473-497).
Dubova, L., I. Alsina and V. Steinberga. 2012. Comparison of Trichoderma spp. use efficiency on cucumbers and lettuce. Sci. Papers Ser. B Hortic. 56: 101-104.
Dudaš, S., I. Šola, B. Sladonja, R. Erhatić, D. Ban and D. Poljuha. 2016. The effect of biostimulant and fertilizer on “low input” lettuce production. Acta Bot. Croat. 75: 253-259.
Fallovo, C., Y. Rouphael, E. Rea, A. Battistelli and G. Colla. 2009. Nutrient solution concentration and growing season affect yield and quality of Latuca sativa L. var. acephala in floating raft culture. J. Sci. Food Agric. 89: 1682-1689.
FAOSTAT. 2017. FAO Statistical Databases. Retrieved on April 06, 2019 from: http://www.fao.org/faostat/en/#data/QC.
Fiorentino, N., V. Ventorino, S. L. Woo, O. Pepe, A. De Rosa, L. Gioia, I. Romano, N. Lombardi, M. Napolitano, G. Colla and Y. Rouphael. 2018. Trichoderma-based biostimulants modulate rhizosphere microbial populations and improve N uptake efficiency, yield and nutritional quality of leafy vegetables. Front. Plant Sci. 9: 743.
Flohe, L. and F. Ursini. 2008. Peroxidase: a term of many meanings. Antioxid. Redox Signal. 10: 1485-1490.
Gan, Y. Z. and A. Azrina. 2016. Antioxidant properties of selected varieties of lettuce (Lactuca sativa L.) commercially available in Malaysia. IFRJ 23: 2357-2362.
Geneva, M. P., I. V. Stancheva, M. M. Boychinova, N. H. Mincheva and P. A. Yonova. 2010. Effects of foliar fertilization and arbuscular mycorrhizal colonization on Salvia officinalis L. growth, antioxidant capacity, and essential oil composition. J. Sci. Food Agric. 90: 696-702.
Higa, T. and J. F. Parr. 1994. Beneficial and effective microorganisms for a sustainable agriculture and environment (Vol. 1). Atami: International Nature Farming Research Center.
Hipol Maribel, R. L. B. and M. L. Dionisio-Sese. 2014. Impact of light variation on the antioxidant properties of red lettuce. eJBio 10: 28-34.
Khalid, M., D. Hassani, M. Bilal, F. Asad and D. Huang. 2017. Influence of bio-fertilizer containing beneficial fungi and rhizospheric bacteria on health promoting compounds and antioxidant activity of Spinacia oleracea L. Bot Stud. 58: 35.
Kheirizadeh Arough, Y., R. Seyed Sharifi, M. Sedghi and M. Barmaki. 2016. Effect of zinc and bio fertilizers on antioxidant enzymes activity, chlorophyll content, soluble sugars and proline in Triticale under salinity condition. Not Bot Horti Agrobo 44: 116-124.
Kim, M. J., Y. Moon, J. C. Tou, B. Mou and N. L. Waterland. 2016. Nutritional value, bioactive compounds and health benefits of lettuce (Lactuca sativa L.). Food Comp. Anal. 49: 19-34.
Kopta, T., M. Pavlikova, A. Sękara, R. Pokluda and B. Maršálek. 2018. Effect of bacterial-algal biostimulant on the yield and internal quality of lettuce (Lactuca sativa L.) produced for spring and summer crop. Not Bot Horti Agrobo 46: 615-621.
Koudela, M. and K. Petríkova. 2008. Nutrients content and yield in selected cultivars of leaf lettuce (Lactuca sativa L. var. crispa). Hort. Sci. (Prague) 35: 99-106.
Kowalska, J. 2011. Effects of Trichoderma asperellum [T1] on Botrytis cinerea [Pers.: Fr.], growth and yield of organic strawberry. Acta Sci Pol-Hortoru 10: 107-114.
Kredics, L., Z. Antal, L. Manczinger, A. Szekeres, F. Kevei and E. Nagy. 2003. Trichoderma strains with biocontrol potential. Food Technol. Biotechnol. 41: 37-42.
Kwak, S. S., S. K. Kim, I. H. Park and J. R. Liu. 1996. Enhancement of peroxidase activity by stressed-related chemicals in sweet potato. Phytochemistry 43: 565-568.
Lichtenthaler, H. K. and A. R. Wellburn. 1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans 11: 591-592.
Liu, X., S. Ardo, M. Bunning, J. Parry, K. Zhou, C. Stushnoff, F. Stoniker, L. Yu and P. Kendall. 2007. Total phenolic content and DPPH radical scavenging activity of lettuce (Lactuca sativa L.) grown in Colorado. LWT-Food Sci Technol 40: 552-557.
Llorach, R., F. A. Tomas-Barberan and F. Ferreres. 2004. Lettuce and chicory byproducts as a source of antioxidant phenolic extracts. J. Agric. Food Chem. 52: 5109-5116.
Llorach, R., A. Martínez-Sánchez, F. A. Tomás-Barberán, M. I. Gil and F. Ferreres. 2008. Characterisation of polyphenols and antioxidant properties of five lettuce varieties and escarole. Food Chem. 108: 1028-1038.
Lopez-Bucio, J., R. Pelagio-Floresa and A. Herrera-Estrella. 2015. Trichoderma as biostimulant: exploiting the multilevel properties of a plant beneficial fungus. Sci. Hortic. 196: 109-123.
Mampholo, B. M., M. M. Maboko, P. Soundy and D. Sivakumar. 2016. Phytochemicals and overall quality of leafy lettuce (Lactuca sativa L.) varieties grown in closed hydroponic system. J. Food Qual. 39: 805-815.
Miller, N. J., J. Sampson, L. P. Candeias, P. M. Bramley and C. A. Rice-Evans. 1996. Antioxidant activities of carotenes and xanthophylls. FEBS Lett. 384: 240-242.
Molla, A. H., M. M. Haque, M. A. Haque and G. N. M. Ilias. 2012. Trichoderma-enriched biofertilizer enhances production and nutritional quality of tomato (Lycopersicon esculentum Mill) and minimizes NPK fertilizer use. Agric. Res. 1: 265-272.
Mou, B. 2009. Nutrient content of lettuce and its improvement. Curr Nutr Food Sci 5: 242-248.
Nicolle, C., A. Carnat, D. Fraisse, J. L. Lamaison, E. Rock, H. Michel, P. Amouroux and C. Remesy. 2004. Characterisation and variation of antioxidant micronutrients in lettuce (Lactuca sativa folium). J. Sci. Food Agric 84: 2061-2069.
Oh, M. M., E. E. Carey and C. B. Rajashekar. 2009. Environmental stresses induce health promoting phytochemicals in lettuce. Plant Physiol Biochem 47: 578-583.
Ozcan, T., A. Akpinar-Bayizit, L. Yilmaz-Ersan and B. Delikanli. 2014. Phenolics in human health. IJCEA 5: 393-396.
Pavlou, G. C., C. D. Ehaliotis and V. A. Kavvadias. 2007. Effect of organic and inorganic fertilizers applied during successive crop seasons on growth and nitrate accumulation in lettuce. Sci. Hortic. 111: 319-325.
Pérez-López, U., J. Miranda-Apodaca, A. Muñoz-Rueda and A. Mena-Petite. 2015. Interacting effects of high light and elevated CO2 on the nutraceutical quality of two differently pigmented Lactuca sativa cultivars (Blonde of Paris Batavia and Oak Leaf). Sci. Hortic. 191: 38-48.
Pérez-Urrestarazu, L., J. Lobillo-Eguíba, R. Fernández-Cañero and V. M. Fernández-Cabanás. 2019. Food safety concerns in urban aquaponic production: nitrate contents in leafy vegetables. Urban For Urban Green. 44: 126431.
Pietikainen, J., M. Pettersson and E. Baath. 2005. Comparison of temperature effects on soil respiration and bacterial and fungal growth rates. FEMS Microbiol. Ecol. 52: 49-58.
Priyadi, K., H. Abdul, T. H. Siagian, C. Nisa, A. Azizah, N. Raihani and K. Inubushi. 2005. Effect of soil type, applications of chicken manure and effective microorganisms on corn yield and microbial properties of acidic wetland soils in Indonesia. Soil Sci. Plant Nutr. 51: 689-691.
Sharma, P., A. N. Patel, M. K. Saini and S. Deep. 2012. Field demonstration of Trichoderma harzianum as a plant growth promoter in wheat (Triticum aestivum L). J. Agric. Sci. 4: 65.
Singleton, V. L. and J. A. Rossi. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16: 144-158.
Stojanović, M., I. Petrović, M. Žuža, Z. Jovanović, Đ. Moravčević, G. Cvijanović and S. Savić. 2020. The productivity and quality of Lactuca sativa as influenced by microbiological fertilisers and seasonal conditions. Zemdirbyste. 107: 345-352.
Sytar, O., M. Zivcak, K. Bruckova, M. Brestic, I. Hemmerich, C. Rauh and I. Simko. 2018. Shift in accumulation of flavonoids and phenolic acids in lettuce attributable to changes in ultraviolet radiation and temperature. Sci. Hortic. 239: 193-204.
Tošić, I., Z. Golić and A. Radosavac. 2016. Effects of the application of biofertilizers on the microflora and yield of lettuce (Lactuca sativa L.). Acta agric. Serb. 21: 91-98.
Weather Underground. 2019. Retrieved on December 20, 2018 from: https://www.wunderground.com.
Zahir, Z.A., A. Munir, H. N. Asghar, B. Shaharoona and M. Arshad. 2008. Effectiveness of rhizobacteria containing ACC deaminase for growth promotion of peas (Pisum sativum) under drought conditions. J. Microbiol. Biotechnol. 18: 958-963.
Złotek, U. and M. Swieca. 2016. Elicitation effect of Saccharomyces cerevisiae yeast extract on main health-promoting compounds and antioxidant and anti-inflammatory potential of butter lettuce (Lactuca sativa L.). J. Sci. Food Agric 96: 2565-2572.

Published

2021-01-31

How to Cite

Stojanović, M., V. Maksimović, D. Mutavdžić, I. Petrović, Z. Jovanović, S. Savić, and J. D. Maksimović. “Determination of Antioxidative and Enzymatic Activity in Green and Red Lettuce Cultivars Affected by Microbiological Fertilisers and Seasons”. Emirates Journal of Food and Agriculture, vol. 33, no. 2, Jan. 2021, pp. 101-12, doi:10.9755/ejfa.2021.v33.i2.2354.

Issue

Section

Research Article