Profile of phenolic compounds and antimicrobial potential of hydroalcoholic extracts from cashew-apple coproducts

  • Amanda Germano Silveira Food Engineering Department, Federal University of Ceará, Campus do Pici, Bl.858 CEP 60356-000, Fortaleza-CE, Brazil.
  • Mônica Maria de Almeida Lopes Biochemistry and Molecular Biology Department, Federal University of Ceará, 12 Campus do Pici, Bl. 907, CEP 60020-181, Fortaleza-CE, Brazil.
  • Elaine Cristina Pereira Food Engineering Department, Federal University of Ceará, Campus do Pici, Bl.858 CEP 60356-000, Fortaleza-CE, Brazil.
  • George Meredite Cunha de Castro Biochemistry and Molecular Biology Department, Federal University of Ceará, 12 Campus do Pici, Bl. 907, CEP 60020-181, Fortaleza-CE, Brazil.
  • Thais Andrade Germano Biochemistry and Molecular Biology Department, Federal University of Ceará, Campus do Pici, Bl. 907, CEP 60020-181, Fortaleza-CE, Brazil.
  • Luciana de Siqueira Oliveira Food Engineering Department, Federal University of Ceará, Campus do Pici, Bl.858 CEP 60356-000, Fortaleza-CE, Brazil.
  • Paulo Riceli Vasconcelos Ribeiro Embrapa Agroindústria Tropical, Sara Mesquita 2270, CEP 60511-110, Fortaleza-CE, Brazil.
  • Kirley Marques Canuto Embrapa Agroindústria Tropical, Sara Mesquita 2270, CEP 60511-110, Fortaleza-CE, Brazil.
  • Maria Raquel Alcântara de Miranda Biochemistry and Molecular Biology Department, Federal University of Ceará, Campus do Pici, Bl. 907, CEP 60020-181, Fortaleza-CE, Brazil.
  • Joelia Marques de Carvalho Federal Institute of Education, Science and Technology of Ceará, Av. Treze de Maio, 2081, Benfica, CEP 60040-531, Fortaleza – CE, Brazil.


Phytochemicals from tropical fruits and their by-products have shown the potential to use as antimicrobial natural. This study aimed to optimize the recovery of phenolic compounds (total polyphenols and flavonoids) from cashew apple using ultrasound-assisted extraction to promote the functional attributes to its coproducts and to evaluate their antioxidant and antimicrobial potential. An experimental design applying a response surface methodology was used for the extraction process. The ethanol concentration (13.76 % to 56.21 %) and the ultrasonic bath time (21.71 to 78.28 min.) were considered as independent variables, and the polyphenols content, total flavonoids as dependent variables. The phenolic profile of optimized hydroalcoholic extracts (UPLC-QToF-MSE) and their antimicrobial potential against foodborne pathogenic bacteria was assessed. The optimized conditions for a total phenolic extract of 750 mg GAE 100 g-1 were 42.16 % ethanol and 37.34 min in an ultrasonic bath, and for total flavonoids of 479.07 mg of quercetin per 100 g-1 were 37.15 % ethanol and 25.13 min. A total of 15 compounds including quercetin and myricetin derivatives, gallic acid, and anacardic acid were identified. The extracts displayed effective action against Staphylococcus aureus and Listeria monocytogenes. The extracts were effective against foodborne pathogenic bacteria thus demonstrating their potential to be a good natural alternative to synthetic additives in the food industry.


Arruda, H. S., G. A. Pereira, D. R. Morais, M. N. Eberlin, and G. M. Pastore. 2018. Determination of free, esterified, glycosylated and insoluble-bound phenolics composition in the edible part of araticum fruit (Annona crassiflora Mart.) and its by-products by HPLC-ESI-MS/MS. Food Chem. 245: 738-749.
Assunção, R. B. and A. Z. Mercadante. 2003. Carotenoids and ascorbic acid from cashew apple (Anacardium occidentale L.): Variety and geographic effects. Food Chem. 81: 495–502.
Ayala-Zavala, J. F, V. Vega-Vega, C. Rosas-Dominguez, H. Palafox-Carlos, J. A. Villa-Rodriguez, M. W. Siddiqui, J. E. Dávila-Aviña and G. A. González-Aguilar. 2011. Agro-industrial potential of exotic fruit byproducts as a source of food additives. Food Res. Int. 44: 1866–1874.
Bataglion, G. A., F. M. da Silva, M. N. Eberlin, and H. H. Koolen. 2015. Determination of the phenolic composition from Brazilian tropical fruits by UHPLC–MS/MS. Food Chem. 180: 280-287.
Branen, J. K. and P. M. Davidson. 2004. Enhancement of nisin, lysozyme, and monolaurin antimicrobial activities by ethylenediaminetetraacetic acid and lactoferrin. Int. J. Food Microbiol. 90: 63-74.
Brandt, A. L., A. Castillo, K. B. Harris, J. T. Keeton, M. D. Hardin and T. M. Taylor. 2010. Inhibition of Listeria monocytogenes by food antimicrobials applied singly and in combination. J. Food Sci. 75: 557- 563.
Balouiri, M., M. Sadiki and S. K. Ibnsouda. 2016. Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal. 6: 71-79.
Chen, W., W. P. Wang, H. S. Zhang and Q. Huang. 2012. Optimization of ultrasonic-assisted extraction of water-soluble polysaccharides from Boletus edulismycelia using response surface methodology. Carbohydr. Polym. 87: 614–619.
Chen, M., Y. Zhao and S. Yu. 2015. Optimisation of ultrasonic-assisted extraction of phenolic compounds, antioxidants, and anthocyanins from sugar beet molasses. Food Chem. 172: 543-550.
Chemat, F., Z. Huma, and K. M. Khan. 2011. Applications of ultrasound in food technology: processing, preservation and extraction. Ultrason Sonochem. 18: 813-835.
CLSI, 2012. Performance Standards for Antimicrobial Disk Susceptibility Tests, Approved Standard, 7th ed., CLSI document M02-A11. Clinical and Laboratory Standards Institute, 950 West Valley Road, Suite 2500, Wayne, Pennsylvania 19087, USA.
Cunha, A. G., E. S. Brito, C. F. H. Moura, P. R. V. Ribeiro and M. R. A. Miranda. 2017. UPLC–qTOF-MS/MS-based phenolic profile and their biosynthetic enzyme activity used to discriminate between cashew apple (Anacardium occidentale L.) maturation stages. J. Chromatogr. B. 1051: 24-32.
Dias-Souza, M. V., R. M. Santos, E. P. Siqueira and P. H. Ferreira-Marçal. 2017. Antibiofilm activity of cashew juice pulp against Staphylococcus aureus, high performance liquid chromatography/diode array detection and gas chromatography-mass spectrometry analyses, and interference on antimicrobial drugs. J Food Drug Anal. 25: 589-596.
Engels, C., A. Schieber and M. G. Gänzle. 2011. Inhibitory spectra and modes of antimicrobial action of gallotannins from mango kernels (Mangifera indica L.). Appl. Environ. Microbiol. 77: 2215-2223.
Fan, J. P, J. Cao, X. H. Zhang, J. Z. Huang, T. Kong, S. Tong and J. H. Zhu. 2012. Optimization of ionic liquid based ultrasonic assisted extraction of puerarin from Radix Puerariae Lobatae by response surface methodology. Food Chem. 135:2299-2306.
Farag, M. A., S. T. Sakna, N. M. El-Fiky, M. M. Shabana and L. A. Wessjohann. 2015. Phytochemical, antioxidant and antidiabetic evaluation of eight Bauhinia L. species from Egypt using UHPLC-PDA-qTOF-MS and chemometrics. Phytochemistry. 119: 41–50.
Fonteles, T. V., A. K. F. Leite, A. R. A. Silva, A. P. G. Carneiro, E. C. Miguel, B. S. Cavada, F. A. N. Fernandes and S. Rodrigues. 2016. Ultrasound processing to enhance drying of cashew apple bagasse puree: Influence on antioxidant properties and in vitro bioaccessibility of bioactive compounds. Ultrason Sonochem. 31: 237–249.
Furtado, M. A. M., F. C. S. Alves, J. L. Martins, M. A. Vasconcelos, V. S. C. Ramos, G. S. Sousa, R. Pulido, L. Bravo and F. Saura-Calixto. 2000. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agric. Food Chem. 48: 3396-3402.
Hernandez, Y., M. G. Lobo and M. Gonzalez. 2009. Factors affecting sample extraction in the liquid chromatographic determination of organic acids in papaya and pineapple. Food Chem. 114: 734–741.
Leonelli, C. and T. J. Mason. 2010. Microwave and ultrasonic processing: now a realistic option for industry. Chem. Eng. Process. 49: 885–900.
Li, Q. and C. Fu. 2005. Application of response surface methodology for extraction optimization of germinant pumpkin seeds protein. Food Chem. 92: 701–706.
Ma, Y. Q., J. C. Chen, D. H. Liu and X. Q. Ye. 2009. Simultaneous extraction of phenolic compounds of citrus peel extracts: effect of ultrasound. Ultrason Sonochem. 16: 57-62.
Macedo, M., R. D. P. Rodrigues, G. A. S. Pinto and E. S. Brito. 2015. Influence of pectinolytic and cellulosic enzyme complexes on cashew bagasse maceration in order to obtain carotenoids. J Food Sci Tech. 52: 3689-3693.
Martins, S., S. I Mussatto, G. Martínez-Avila, J. Montãnez-Saenz, C. N Aguilar and J. A Teixeira. 2011. Bioactive phenolic compounds: production and extraction by solid-state fermentation: a review. Biotechnol Adv. 29: 365-373.
Michodjehoun-Mestres, L., J. M. Souquet, H. Fulcrand, C. Bouchut, M. Reynes and J. M. Brillouet. 2009. Monomeric phenols of cashew apple (Anacardium occidentale L.). Food Chem. 112: 851-857.
Obanda, M. and P. O. Owuor. 1997. Flavanol Composition and Caffeine Content of Green Leaf as Quality Potential Indicators of Kenyan Black Teas. J Sci Food Agric. 74: 209-215.
Oliveira, D. A., A. A. Salvador, A. S. Junior, E. F. A. Smânia, M. Maraschin and S. R. S. Ferreira. 2013. Antimicrobial activity and composition profile of grape (Vitis vinifera) pomace extracts obtained by supercritical fluids. J. Biotechnol. 164: 423-432.
Patil, V., S. Angadi and S. Devdhe. 2015. Determination of quercetin by UV spectroscopy as quality control parameter in herbal plant:Cocculus hirsutus. J Chem Pharm Res. 7: 99-104.
Pinho, C., A. Melo, C. Mansilha and I. M. Ferreira. 2011. Optimization of conditions for anthocyanin hydrolysis from red wine using response surface methodology (RSM). J. Agric. Food Chem. 59: 50-55.
Raybaudi-Massilia, R. M., J. Mosqueda-Melgar, R. Soliva-Fortuny and O. Martín-Belloso. 2009. Control of pathogenic and spoilage microorganisms in fresh-cut fruits and fruit juices by traditional and alternative natural antimicrobials. Compr Rev Food Sci F. 8: 157-180.
Rezende, Y. R. R. S., J. P. Nogueira and N. Narain. 2017. Comparison and optimization of conventional and ultrasound assisted extraction for bioactive compounds and antioxidant activity from agro-industrial acerola (Malpighia emarginata DC) residue. LWT - Food Sci. Technol. 85: 158-169.
Rodríguez-Carpena, J. G., D. Morcuende, M. J. Andrade, P. Kylli and M. Estévez. 2011. Avocado (Persea americana Mill.) phenolics, in vitro antioxidant and antimicrobial activities, and inhibition of lipid and protein oxidation in porcine patties. J Agric Food Chem. 59: 5625–5635.
Rodrigues, S., F. A. Fernandes, E. S. de Brito, A. D. Sousa and N. Narain. 2015. Ultrasound extraction of phenolics and anthocyanins from jabuticaba peel. Ind Crop Prod. 69: 400-407.
Rodsamran, P., R. Sothornvit. 2019. Extraction of phenolic compounds from lime peel waste using ultrasonic-assisted and microwave-assisted extractions. Food Biosci. 28: 66-73.
Silva, R. A., R. R. Dihl, D. N. Santos, B. R. R. Abreu, A. Lima, H. H. R. Andrade and M. Lehmann. 2013. Evaluation of antioxidant and mutagenic activities of honey-sweetened cashew apple nectar. Food Chem. Toxicol. 62: 61-67.
Sousa, A. D., A. I. V. Maia, T. H. S. Rodrigues, K. M. Canuto, P. R. V. Ribeiro, R. C. A. Pereira, R. F. Vieira and E. S. Brito. 2016. Ultrasound–assisted and pressurized liquid extraction of phenolic compounds from Phyllanthus amarus and its composition evaluation by UPLC–QTOF. Ind Crop Prod. 79: 91–103.
Spínola, V., J. Pinto and P. C. Castilho. 2015. Identification and quantification of phenolic compounds of selected fruits from Madeira Island by HPLC-DAD–ESI-MSn and screening for their antioxidant activity. Food Chem. 173:14-30.
Yan, Y. L, C. H. Yu, J. Chen, X. X. Li, W. Wang and S. Q. Li. 2011. Ultrasonic-assisted extraction optimized by response surface methodology, chemical composition and antioxidant activity of polysaccharides from Tremellames enterica. Carbohydr Polym. 83: 217–224.
Zhu, C. and X. Liu. 2013. Optimization of extraction process of crude polysaccharides from pomegranate peel by response surface methodology. Carbohydr Polym. 92: 1197–1202.
Wang, X., Y. Wu, G. Chen, W. Yue, Q. Liang and Q. Wu. 2013. Optimization of ultra-sound assisted extraction of phenolic compounds from Sparganii rhizoma with response surface methodology. Ultrason Sonochem. 20: 846–854
329 Views | 57 Downloads
How to Cite
Silveira, A. G., M. M. de A. Lopes, E. C. Pereira, G. M. C. de Castro, T. A. Germano, L. de S. Oliveira, P. R. V. Ribeiro, K. M. Canuto, M. R. A. de Miranda, and J. M. de Carvalho. “Profile of Phenolic Compounds and Antimicrobial Potential of Hydroalcoholic Extracts from Cashew-Apple Coproducts”. Emirates Journal of Food and Agriculture, Vol. 33, no. 2, Mar. 2021, pp. 139-48, doi: Accessed 15 May 2021.
Research Article