Comparative examination of bioactive phytochemicals in quince (Chaenomeles) fruits and their in vitro antioxidant activity

Authors

  • Szymon Byczkiewicz Department of Gastronomy Science and Functional Foods, Poznań University of Life Science, Poznań, Poland;
  • Dominik Szwajgier Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Lublin, Poland.
  • Joanna Kobus Cisowska Department of Gastronomy Science and Functional Foods, Poznań University of Life Science, Poznań, Poland;
  • Oskar Szczepaniak Department of Gastronomy Science and Functional Foods, Poznań University of Life Science, Poznań, Poland;
  • Piotr Piotr Szulc Department of Agronomy, Poznań University of Life Sciences

DOI:

https://doi.org/10.9755/ejfa.2021.v33.i4.2667

Abstract

Chaenomeles fruits are being applied more frequently, mainly due to its high content of bioactive compounds and their positive effect on health condition. Currently, they are raw materials in pharmaceutical, cosmetic and food industries. The aim of work was to characterize cultivar Cido of Chaenomeles japonica and two varietal hybrids: Chaenomeles x californica Gold Kalif and Chaenomeles x californica Maksim under their content of mineral, vitamins, antiradical capacity, organic acids, phenolic acids and flavonols. The content of individual macroelements varied between tested cultivars. Cido was the cultivar with the highest mineral content. In that cultivar Fe was comprised two-fold higher than in cv. Maksim, and Cu level (1.1 mg/100g) doubled the content of that element in cv. Gold Kalif. FRAP test results ranged between 379 µM FeSO4/g DM for cv. Cido and 403 µM FeSO4/g DM for cv. Maksim. Low content of amygdalin was also confirmed in all studied fruits. The highest amygdalin content was found in Cido (39.49 μg/100g), and Gold Kalif contained the fewest amygdalin (18.42 μg/100 g). All the cultivars tested were characterized by the highest content of malic acid (9.22-11.44 mg / g DM), while the main phenolic acid in quince fruits was chlorogenic acid 6953.9 - 8185.5 μg / g DM. The content of organic and phenolic acids depends on the variety of the quince. Due to the high content of phytochemicals in quince fruit and the low content of amygdalin, it seems reasonable to develop new directions of fruit application in food technology and functional food design.

Downloads

Download data is not yet available.

References

Adams, A. K., E. O. Wermuth, and P. E. McBride. 1999. Antioxidant vitamins and the prevention of coronary heart disease. Am Fam Physician 60:895–904
Antoniewska , A., J. Rutkowska, and A. Adamska. 2017. Profile of Japanese quince fruit and its application in food industry. Zywn Nauk Technol Jakosc/Food Sci Technol Qual 24:5–15
Antoniewska, A., J. Rutkowska, and MM Pineda. 2019. Antioxidative, sensory and volatile profiles of cookies enriched with freeze-dried Japanese quince (Chaenomeles japonica) fruits. Food Chem 286:376–387
Bijami, A., F. Rezanejad, H. Oloumi, and H. Mozafari. 2020. Minerals, antioxidant compounds and phenolic profile regarding date palm (Phoenix dactylifera L.) seed development. Sci Hortic (Amsterdam) 262:109017
Cheung, L.M., P. C. K. Cheung, and V .E. C. Ooi. 2003. Antioxidant activity and total phenolics of edible mushroom extracts. Food Chem 81:249–255
Cortés, V., P. Talens, J. M. Barat, and M. J. Lerma-García. 2018. Potential of NIR spectroscopy to predict amygdalin content established by HPLC in intact almonds and classification based on almond bitterness. Food Control 91:68–75
Du, H., J. Wu, H. Li, P. X. Zhong, Y. J. Xu, C. H. Li, K. X. Ji, and L. S. Wang. 2013. Polyphenols and triterpenes from Chaenomeles fruits: Chemical analysis and antioxidant activities assessment. Food Chem 141:4260–4268
Granato, D., A. Mocan, and J.S. Câmara. 2020. Is a higher ingestion of phenolic compounds the best dietary strategy? A scientific opinion on the deleterious effects of polyphenols in vivo. Trends Food Sci Technol 98:162–166
Kobus-Cisowska, J., P. Szulc, O. Szczepaniak, M. Dziedziński, D. Szymanowska,K. Szymandera-Buszka, E. Goryńska-Goldmann, M. Gazdecki, A. Telichowska, and M. Ligaj. 2020. Variability of Hordeum vulgare L. Cultivars in Yield, Antioxidant Potential, and Cholinesterase Inhibitory Activity. Sustain. 12
Kobus-Cisowska, J., D. Szymanowska, O. Szczepaniak, D. Kmiecik, M. Przeor, A. Gramza-Michałowska, J. Cielecka-Piontek, M. Smuga-Kogut, and P. Szulc. 2019. Humulus lupulus L. hops as a potent antioxidant: implications for neurodegenerative disorders and antimicrobial effect. Nutrients 11:1377
Kolesar, E., E. Tvrda, M. Halenar, M. Schneidgenova, L. Chrastinova, L. Ondruska, R. Jurcik, A. Kovacik, E. Kovacikova, P. Massanyi, and A. Kolesarova. 2018. Assessment of rabbit spermatozoa characteristics after amygdalin and apricot seeds exposure in vivo. Toxicol Reports 5:679–686
Korantzopoulos, P., T. M. Kolettis, D. Galaris, and J. A. Goudevenos. 2007.. The role of oxidative stress in the pathogenesis and perpetuation of atrial fibrillation. Int J Cardiol 115:135–143
Kulczyński, B., J. Kobus-Cisowska, D. Kmiecik, A. Gramza-Michałowska, D. Golczak, and J. Korczak. 2016. Antiradical capacity and polyphenol composition of asparagus spears varieties cultivated under diff erent sunlight conditions. Acta Sci Pol Technol Aliment 15:267–279
Lee, H., and G. Coates. 1999.. Vitamin C in frozen, fresh squeezed, unpasteurized, polyethylene-bottled orange juice: a storage study. Food Chem 65:165–168
Leopold, J. A. 2015. Antioxidants and coronary artery disease. Coron Artery Dis 26:176–183
Lewandowska, U., K. Szewczyk, K. Owczarek, Z. Hrabec, A. Podsędek, M. Koziołkiewicz, and E. Hrabec. 2013. Flavanols from Japanese Quince (Chaenomeles Japonica) Fruit Inhibit Human Prostate and Breast Cancer Cell Line Invasiveness and Cause Favorable Changes in Bax/Bcl-2 mRNA Ratio. Nutr Cancer 65:273–285
Liu, C., R. M. Russell, and X. D. Wang. 2004. α-Tocopherol and Ascorbic Acid Decrease the Production of β-Apo-carotenals and Increase the Formation of Retinoids from β-Carotene in the Lung Tissues of Cigarette Smoke–Exposed Ferrets In Vitro. J Nutr 134:426–430
Liu, S., M. Jia, J. Chen, H. Wan, R. Dong, S. Nie, M. Xie, and Q. Yu. 2019. Removal of bound polyphenols and its effect on antioxidant and prebiotics properties of carrot dietary fiber. Food Hydrocoll 93:284–292
Makarević, J., I. Tsaur, E. Juengel, H. Borgmann, K. Nelson, C. Thomas, G. Bartsch, A. Haferkamp, and R. A. Blaheta. 2016. Amygdalin delays cell cycle progression and blocks growth of prostate cancer cells in vitro. Life Sci 147:137–142
Miao, J., X. Li, C. Zhao, X. Gao, Y. Wang, and W. Gao. 2018. Active compounds, antioxidant activity and α-glucosidase inhibitory activity of different varieties of Chaenomeles fruits. Food Chem 248:330–339
Miao, X., Z. Zhao, H. Zhu, M. Li, and Q. Zhao. 2013. Comparison of second-derivative spectrophotometry and HPLC for determination of amygdalin in wild apricot kernels. ScienceAsia 39:444–447
Nawirska-Olszańska, A., A. Biesiada, A. Kucharska, and A. Sokół-Łętowska. 2012. Effect of production method and storage conditions of pumpkin preserves enriched with Japanese quince and cornelian cherry on their physical-chemical properties. ZywnoscNaukaTechnologiaJakosc/FoodScienceTechnologyQuality 19:
O’Sullivan, A. M., Y. C. O’Callaghan, T. P. O’Connor, and N. M. O’Brien. 2013. Comparison of the antioxidant activity of commercial honeys, before and after in-vitro digestion. Polish J Food Nutr Sci 63:167–171
Pawlak-Lemańska, K., K. Włodarska, M. Przybylska, and B. Tyrakowska .2018. The Influence of Quince and Japanese Quince on Health Benefits and Sensory Properties of Apple Juice. Nauk Przyr Technol 12:35–44
Rajan, V. K., and K. Muraleedharan. 2017. A computational investigation on the structure, global parameters and antioxidant capacity of a polyphenol, Gallic acid. Food Chem 220:93–99
Re, R., N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. Rice-Evans. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237
Ros, J., J. Laencina, P. Hellin, M. Jordan, R. Vila, and K. Rumpunen. 2004. Characterization of juice in fruits of different Chaenomeles species. Leb und-Technologie 37:301–307
Samadi, S., and F. Raouf Fard. 2020. Phytochemical properties, antioxidant activity and mineral content (Fe, Zn and Cu) in Iranian produced black tea, green tea and roselle calyces. Biocatal Agric Biotechnol 23:101472
Sarpras, M., I. Ahmad, A. Rawoof, and N. Ramchiary. 2019. Comparative analysis of developmental changes of fruit metabolites, antioxidant activities and mineral elements content in Bhut jolokia and other Capsicum species. LWT 105:363–370
Shamsi, M. A., A. Amin, and E. Adeghate. 2006. Effect of Vitamin C on Liver and Kidney Functions in Normal and Diabetic Rats. Ann N Y Acad Sci 1084:371–390
Szczepaniak, O. M., M. Ligaj, J. Kobus-Cisowska, P. Maciejewska, M. Tichoniuk, and P. Szulc. 2019. Application for novel electrochemical screening of antioxidant potential and phytochemicals in Cornus mas extracts. CyTA - J Food 17:781–789
Tarko, T., A. D. Duda-Chodak, and P. Pogoń. 2010. Profile of japanese quince and cornelian cherry fruit. Zywn Nauka Technol Jakosc/Food Sci Technol Qual 17:
Telichowska, A., J. Kobus-Cisowska, M. Ligaj, K. Stuper-Szablewska, D. Szymanowska, M. Tichoniuk, and P. Szulc. 2020. Polyphenol content and antioxidant activities of Prunus padus L. and Prunus serotina L. leaves: Electrochemical and spectrophotometric approach and their antimicrobial properties. Open Chem 18:1125–1135
Thomas, M., F. Guillemin, F. Guillon, and J. F. Thibault. 2003. Pectins in the fruits of Japanese quince (Chaenomeles japonica). Carbohydr Polym 53:361–372
Turkiewicz, I. P., A. Wojdyło, K. Lech, K. Tkacz, and P. Nowicka. 2019. Influence of different drying methods on the quality of Japanese quince fruit. LWT 114:108416
Turkiewicz, I. P., A. Wojdyło, K. Tkacz, and P. Nowicka. 2020. Carotenoids, chlorophylls, vitamin E and amino acid profile in fruits of nineteen Chaenomeles cultivars. J Food Compos Anal 93:103608
Wahab, M. F., Z. S. Breitbach, D. W. Armstrong, R. Strattan, and A. Berthod. 2015. Problems and Pitfalls in the Analysis of Amygdalin and Its Epimer. J Agric Food Chem 63:8966–8973
Xie, X., G. Zou, and C. Li. 2016. Purification, characterization and in vitro antioxidant activities of polysaccharide from Chaenomeles speciosa. Int J Biol Macromol 92:702–707
Zhang, K., J. Li, H. Hou, H. Zhang, and B. Li. 2019a. Purification and characterization of a novel calcium-biding decapeptide from Pacific cod (Gadus Macrocephalus) bone: Molecular properties and calcium chelating modes. J Funct Foods 52:670–679
Zhang. R., S. Li, Z. Zhu, and J. He. 2019b. Recent advances in valorization of Chaenomeles fruit: A review of botanical profile, phytochemistry, advanced extraction technologies and bioactivities. Trends Food Sci Technol 91:467–482
`

Published

2021-04-25

How to Cite

Byczkiewicz, S., D. Szwajgier, J. K. Cisowska, O. Szczepaniak, and P. Piotr Szulc. “Comparative Examination of Bioactive Phytochemicals in Quince (Chaenomeles) Fruits and Their in Vitro Antioxidant Activity”. Emirates Journal of Food and Agriculture, vol. 33, no. 4, Apr. 2021, pp. 293-02, doi:10.9755/ejfa.2021.v33.i4.2667.

Issue

Section

Research Article