Morphological characterization of wild populations of Solanum lycopersicum var. cerasiforme in the tomato domestication area

  • Gino Délices Facultad de Ciencias Biológicas y Agropecuarias, Región Orizaba-Córdoba, Universidad Veracruzana. Peñuela, SN, Col. Centro, 94945 Amatlán de los Reyes Veracruz, México;
  • Otto Raúl Leyva Ovalle Facultad de Ciencias Biológicas y Agropecuarias, Región Orizaba-Córdoba, Universidad Veracruzana. Peñuela, SN, Col. Centro, 94945 Amatlán de los Reyes Veracruz, México;
  • Claudio Mota Vargas Instituto de Ecología A. C., camino Antiguo a Coatepec 351, El Haya, 91073 Xalapa Enríquez, Veracruz, México;
  • Rosalía Núñez Pastrana Facultad de Ciencias Biológicas y Agropecuarias, Región Orizaba-Córdoba, Universidad Veracruzana. Peñuela, SN, Col. Centro, 94945 Amatlán de los Reyes Veracruz, México;
  • Pablo Andrés Meza Facultad de Ciencias Biológicas y Agropecuarias, Región Orizaba-Córdoba, Universidad Veracruzana. Peñuela, SN, Col. Centro, 94945 Amatlán de los Reyes Veracruz, México;
  • José Andrés Herrera Corredor Colegio de Postgraduados; Carretera Estatal Córdoba - Veracruz Km. 348.5, Venta Parada 11, 94500 Córdoba, Ver.


Wild tomatoes Solanum lycopersicum var. cerasiforme are found in regions with wide environmental diversity, in the state of Veracruz, México, which has originated morphological variations within this group leading to his adaptation to different environments. The aim of this study was to investigate the morphological variations of S. l. var. cerasiforme in his domestication area. We collected plants and fruits during the field trips, and we extracted seeds from these fruits to sow them later, under the greenhouse. We evaluated 35 characters according to the IPGRI (International Plant Genetic Resources Institute) descriptors in 10 collections of S. l. var. cerasiforme, we used a completely random design. In order to compare de collections and analyze the variables we performed variance analysis, principal component analysis and cluster analysis with euclidean distance (UPGMA clustering method). We found significant differences between the variables (Tukey, P≤ 0.05), except for the style length and flower number per plant variables. We found that 91 % of the collections have a pistil inserted and 9 % exert. The first two components explained 78 % of the total variation. The dispersion of the collections in the four quadrants of the first two components indicated great phenotypic diversity. We found four groups and we observed the greatest variation in the yield and reproductive variables. This study shows intraspecific morphological differences between wild tomato populations in the state of Veracruz, a state with a wide environmental and ecosystem diversity. It can be said that in terms of morphological characterization of wild tomato species and cultivated tomatoes for both the pattern of variability is the same. The populations we have studied could constitute a valuable germplasm bank for genetic improvement programs.


Agong, S. G., S. Schittenhelm, and W. Friedt. 2001. Genotypic variation of Kenyan tomato (Lycopersicon esculentum L.) germplasm. Journal of Food Technology in Africa. 6:13–17.

Agudelo, A. G. A. and N. C. Aguirre. 2011. Caracterización morfológica del tomate tipo Cereza (Solanum lycopersicum Linnaeus). 2: 44–44.

Álvarez Hernández, J. C., H. Cortez-Madrigal, and I. García-Ruiz. 2009. Exploración y caracterización de poblaciones silvestres de jitomate (solanaceae) en tres regiones de michoacán, méxico. Polibotánica. 28: 139–159.

Arya, P.S. and S.S. Saini. 1976. Genetic variability and correlation studies in bell peppers. Haryana J. Hort. Sci. 5:236-244.

Bai, Y. and P. Lindhout. 2007. Domestication and Breeding of Tomatoes: What have We Gained and What Can We Gain in the Future? Annals of Botany. 100: 1085–1094.

Bauchet, G and M. Causse. (2012). Genetic Diversity in Tomato (Solanum lycopersicum) and Its Wild Relatives, Genetic Diversity in Plants, Prof. Mahmut Caliskan (Ed.), ISBN: 978-953-51-0185-7, InTech, Available from:

Bergougnoux, V. 2014. The history of tomato: From domestication to biopharming. Biotechnology
Advances. 32: 170–189.

Bhattarai, K., S. Sharma, and D. R. Panthee. 2018. Diversity among Modern Tomato Genotypes
at Different Levels in Fresh-Market Breeding. International Journal of Agronomy. 2018: 1–15.

Blanca, J., J. Cañizares, L. Cordero, L. Pascual, M. J. Diez, and F. Nuez. 2012. Variation Revealed
by SNP Genotyping and Morphology Provides Insight into the Origin of the Tomato. PLoS ONE.
7(10): e48198–e48198.

Bonilla-Barrientos, O., R. Lobato-Ortiz, J. J. García-Zavala, S. Cruz-Izquierdo, D. Reyes-López, E. Hernández-Leal. 2014. Diversidad agronómica y morfológica de tomates arriñonados y tipo pimiento de uso local en Puebla y Oaxaca, México. Revista Fitotecnia Mexicana. 37: 129–129.

Boccard, J. and S. Rudaz. 2013. Mass spectrometry metabolomic data handling for biomarker discovery. Academic Press. pp. 425-445.

Carrillo-Rodríguez, J. C., J. L. Chávez-Servia. (2010). Caracterización agromorfológica de muestras de tomate de Oaxaca. Revista Fitotecnia Mexicana. 33: 1-6.

Crisanto-Juárez, A. U., A.M. Vera-Guzmán, J. L Chávez-Servia, and J.C. Carrillo-Rodríguez. (2010). Calidad de frutos de tomates silvestres (Lycopersicon esculentum var. cerasiforme Dunal) de Oaxaca, México. Revista Fitotecnia Mexicana. 33: 7-13.

Delices, G., R. Otto, R. N. Pastrana, P. A. Meza, R. Serna-Lagunez, and R. G. Pastrana. 2019. Biogeografía del tomate Solanum lycopersicum var. cerasiforme (Solanaceae) en su centro de origen (sur de América) y de domesticación (México). Revista de Biología Tropical. 67:

Dharmatti, P. R., B. B. Madalgeri, I. M. Mannikeri, R. V. Patil, and G. Patil. 2001. Genetic divergence studies in summer tomatoes. Karnataka Journal of Agricultural Sciences. 14: 407–411.

D'Souza, M. C., S. Singha and M. Ingle. (1992). Lycopene concentration of tomato fruit can be estimated from chromaticity values. HortScience. 27: 465-466.

Fernandes, M., P. A. D. O. and L R A Bianchi, L. S. Silva, E. A. Vianna, M. M. Santos, and Moulin.
2018. Morpho-agronomic characterization and analysis of genetic divergence among accessions of tomatoes (Solanum lycopersicum L.). Cienc. Rural. 48.

Fischer, I., L. Camus-Kulandaivelu, F. Allal, and W. Stephan. 2011. Adaptation to drought in two
wild tomato species: the evolution of the Asr gene family. New Phytologist. 190: 1032–1044.

Flores-Hernández, L. A., R. Lobato-Ortiz, J. J. García-Zavala, J. D. Molina-Galán, D.M. Sargerman-Jarquín and M.D.J. Velasco-Alvarado. (2017). Parientes silvestres del tomate como fuente de germoplasma para el mejoramiento genético de la especie. Revista Fitotecnia Mexicana. 40: 83-91.

Foolad, M. R. 2007. Current Status of Breeding Tomatoes for Salt and Drought Tolerance. In M. Jenks, P. Hasegawa, & S. Jain (Eds.) Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops, (pp. 669–700). Springer.

García-Gusano, M., S. García-Martínez, and J. J. Ruiz. 2004. Use of SNP markers to genotype commercial hybrids and Spanish local cultivars of tomato. Tomato Genet Coop Rep. 54: 12–15.

García-Martínez, S., L. Andreani, M. Garcia-Gusano, F. Geuna, and J. J. Ruiz. 2006. Evaluation of amplified fragment length polymorphism and simple sequence repeats for tomato germplasm fingerprinting: utility for grouping closely related traditional cultivars. Genome. 49: 648–656.

Geladi, P. (1988). Notes on the history and nature of partial least squares (PLS) modelling. Journal of Chemometrics, 2(4), 231-246.

Gomez, K. A. and A. A. Gomez 1984. Statistical Procedures for Agricultural Research. International Rice Research Institute, College. John Wiley & Sons. ISBN 0-471-87092-7.

González-Aguilera, J., L. A. Pessoni, G. Belfort-Rodrigues, A.Y. Elsayed, D.J. Henriques-da Silva, and E- Gonçalves-de Barros. (2011). Genetic variability by ISSR markers in tomato (Solanum lycopersicum Mill.). Revista Brasileña de Ciencias Agrarias. 6: 243-252.

Hijmans, R. J., S. E. Cameron, J. L. Parra, P. G. Jones, and A. Jarvis. 2005. Very high-resolution interpolated climate surfaces for global land areas. International Journal of Climatology. 25:1965–1978.

Jenkins, J. A. 1948. The origin of the cultivated tomato. Economic Botany. 2: 379–392.

Leong, H. Y., P. L. Show, M. H. Lim, C. W. Ooi, and T. C. Ling 2018. Natural red pigments from
plants and their health benefits: A review. Food Reviews International. 34: 463–482.

Li, K., and E. Yan, . 2018. Co-mention network of R packages: Scientific impact and clustering structure. Journal of Informetrics. 12: 87-100.

Liu, D., L. Yang, J. Zhang, G. Zhu, H. Lü, Y. Lü. 2020. Domestication and breeding changed tomato fruit transcriptome. Journal of Integrative Agriculture. 19: 120–132.

Mata-Nicolás, E., J. Montero-Pau, E. GimenoPaez, V. Garcia-Carpintero, P. Ziarsolo, N. Menda. 2020. Exploiting the diversity of tomato: the development of a phenotypically and genetically detailed germplasm collection. Horticulture Research. 7:1–14.

Mohanty, A., J. P. Martín, and I. Aguinagalde. 2001. A population genetic analysis of chloroplast DNA in wild populations of Prunus avium L. in Europe. Heredity. 87: 421–427.

Nakazato, T., D. L. Warren, and L. C. Moyle. 2010. Ecological and geographic modes of species divergence in wild tomatoes. American Journal of Botany. 97: 680–693.

Parthasarathy, V. A. and C. Aswath 2002. Genetic diversity among tomato genotypes. Ind. J. Hort.
59: 162–166.
Patel, D.A., P.T. Shukla and G.C. Jadeja. 2001. Morphological studies on interspecific hybrids between Solanum indicum L. and Solanum melongena L. Iridian J. Genet. 61: 180-182.

Pearson K. On lines and planes of closest fit to systems of points in space. Philos Mag 1901; 2:559e72.

Peralta, I.E., S. Knapp and D.M. Spooner. 2005. New Species of Wild Tomatoes (Solanum Section Lycopersicon: Solanaceae) from Northern Peru. Systematic Botany. 30: 424-434.

Peralta, I.E., D.M. Spooner and S. Knapp. 2008. Taxonomy of wild tomatoes and their relatives (Solanum sect. Lycopersicoides, sect. Juglandifolia, sect. Lycopersicon; Solanaceae). Systematic Botany. 84: 186.

Ranc, N., S. Muños, S. Santoni and M. Causse. 2008. A clarified position for solanum lycopersicum var. cerasiforme in the evolutionary history of tomatoes (solanaceae). BMC Plant Biol. 8:130.

Restrepo, E.F.S., F.A.C. Vallejo and M.A. Lobo. 2006. Evaluación de la resistencia al pasador del fruto Neoleucinodes elegantalis y caracterización morfoagronómica de germoplasma silvestre de Lycopersicon spp. Acta Agronómica. 55:15–21.

Restrepo, L. F., L.S. Posada, and R Noguera. (2012). Application of the principal-component analysis in the evaluation of three grass varieties. Revista Colombiana de Ciencias Pecuarias. 25: 258-266.

Rick, C.M. 1974. The Tomato. In: R.C. King (ed.), Handbook of Genetics: Plants, Plant Viruses, and Protists. Springer US, Boston, MA. pp.247–280.

Saavedra, T.M., G.A. Figueroa, J.G.D. Cauih, T.M. Saavedra, G.A. Figueroa and J.G.D. Cauih. 2017. Origin and evolution of tomato production Lycopersicon esculentum in México. Ciência Rural. 47:3.

Saini, R.K., S.H. Nile and S.W. Park. 2015. Carotenoids from fruits and vegetables: Chemistry, analysis, occurrence, bioavailability and biological activities. Food Research International. 76:735–750.

Salas Fernandez, M.G., P.W. Becraft, Y. Yin and T. Lübberstedt. 2009. From dwarves to giants? Plant height manipulation for biomass yield. Trends in Plant Science. 14:454–461.

Salim, M.M.R., M.H. Rashid, M.M. Hossain and M. Zakaria. 2018. Morphological characterization of tomato (Solanum lycopersicum L.) genotypes. Journal of the Saudi Society of Agricultural Sciences. 19:233-240.

Sanjuan-Lara, F., P. Ramírez-Vallejo, P. Sánchez-García, M. Livera-Muñoz, M. Sandoval-Villa, J.C. Carrillo-Rodríguez and C. Perales-Segovia. 2014. Variación en características de intéres agronómico dentro de una población nativa de tomate (Solanum lycopersicum L.). RevFitotecMex. 37:159.

Scintu, A., M. Rodriguez, D. Rau, J. Giovannoni and G. Attene. (2015). Characterization of a wide collection of tomato (Solanum lycopersicum L.) for morpho-phenological, quality and resistance traits. Journal of Agriculture. 21: 38-43.

Stoilova, T. and G. Pereira. 2013. Assessment of the genetic diversity in a germplasm collection of cowpea (Vigna unguiculata (L.) Walp.) using morphological traits. African Journal of Agricultural Research. 8: 208-215.

Sun, X., J. Shu, A.M. Ali Mohamed, X. Deng, X. Zhi, J. Bai, Y. Cui, X. Lu, Y. Du, X. Wang, Z. Huang, Y. Guo, L. Liu and J. Li. 2019. Identification and Characterization of EI (Elongated Internode) Gene in Tomato (Solanum lycopersicum). International Journal of Molecular Sciences. 20:2204.

Vargas, T.O., E.P. Alves, A.C. Abboud, M.A. Leal and M.G. Carmo. 2015. Diversidade genética em acessos de tomateiro heirloom. Hortic. Bras. 33:174–180.

Vishwanath, K., P.S. Rajendra, H.M. Pallavi and K.P.R Prasanna. 2014. Characterization of Tomato Cultivars Based on Morphological Traits. Annals of Plant Sciences. 3: 854-862 .

Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and intelligent laboratory systems, 2(1-3), 37-52.

Yamamoto, K., W. Guo and S. Ninomiya. 2016. Node Detection and Internode Length Estimation of Tomato Seedlings Based on Image Analysis and Machine Learning. Sensors (Basel). 16:1044.
219 Views | 304 Downloads
How to Cite
Délices, G., O. R. L. Ovalle, C. M. Vargas, R. N. Pastrana, P. A. Meza, and J. A. H. Corredor. “Morphological Characterization of Wild Populations of Solanum Lycopersicum Var. Cerasiforme in the Tomato Domestication Area”. Emirates Journal of Food and Agriculture, Vol. 33, no. 4, May 2021, pp. 303-1, doi: Accessed 25 May 2022.
Research Article