Physiological and physicochemical behavior of guamara (Bromelia pinguin) and cocuixtle (Bromelia karatas) fruits, as well as the antibacterial effect of their pre-purified proteases

Authors

  • Montalvo-González Efigenia Laboratorio Integral de Investigación en Alimentos, Instituto Tecnológico de Tepic, Av. Tecnológico # 2595, Col. Lagos del Country. Tepic, Nayarit. México.
  • Anaya-Esparza Luis Miguel Laboratorio Integral de Investigación en Alimentos, Instituto Tecnológico de Tepic, Av. Tecnológico # 2595, Col. Lagos del Country. Tepic, Nayarit. México.; Centro Universitario de los Altos, Universidad de Guadalajara, campus Tepatitlán, Carretera Tepatitlán-Yahualica 7, km 5. Guadalajara, Jalisco, México.
  • Martínez-Olivo Abraham Osiris, Abreu Pay Departamento de Farmacia, Instituto de Farmacia y Alimento, Universidad de la Habana, Cuba. Calle 222 No. 2317, entre 23 y 31, La Coronela, La Lisa, La Habana, Cuba.
  • Sánchez-Burgos Jorge Alberto Laboratorio Integral de Investigación en Alimentos, Instituto Tecnológico de Tepic, Av. Tecnológico # 2595, Col. Lagos del Country. Tepic, Nayarit. México.
  • García-Magaña María de Lourdes Laboratorio Integral de Investigación en Alimentos, Instituto Tecnológico de Tepic, Av. Tecnológico # 2595, Col. Lagos del Country. Tepic, Nayarit. México.

DOI:

https://doi.org/10.9755/ejfa.2021.v33.i4.2686

Abstract

The objective was to study the behavior of the respiration rate (RR) of guamara and cocuixtle fruits during storage, the effect or the maturity stage (green maturity and consumption maturity) of these fruits on physicochemical parameters and specific proteolytic activity, as well as the antibacterial effect of the prepurified proteases of these fruits. The guamara and cocuixtle fruits presented a RR of 15 mL CO2/kg·h and 10 mL CO2/kg·h, respectively; and because the ethylene production was not detected in any of the species, it was concluded that both fruits are of the non-climacteric type. The cocuixtle fruits presented the highest specific enzymatic activity in the state of green maturity and the guamara fruits in the state of consumption maturity, with 18.99 and 53.88 U/mg of protein, respectively. Likewise, pre-purified proteases from both fruits showed antibacterial activity against E. coli and S. aureus. It is concluded that ripened guamara fruits and green cocuixtle fruits can be an important source of proteases for the food industry and they can be used against pathogens.

Downloads

Download data is not yet available.

References

Aguilera-Aguirre, S., Meza-Espinoza, L., Hernández-Mendoza, A., Vallejo-Córdoba, B., González-Córdoba, A. F. and Montalvo-González, E. 2018. Evaluación de la capacidad inhibición de hemólisis oxidativa y actividad antimicrobiana de fracciones peptídicas obtenidas de la hidrólisis de proteína de huevo, leche y soya usando proteasas extraídas de Bromelia pinguin y Bromelia karatas. TIP. 21(1): 13–21. Doi: https://doi.org/10.22201/fesz.23958723e.2019.1.142
Alexander, L. and Grierson, D. 2002. Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. J. Exp. Bot. 53(377: 2039–2055. Doi: 10.1093/jxb/erf072
AOAC 2005. Official method of analysis chemists. In W. Horwitz (Ed.). Maryland, USA. Official Method of Analysis Chemists.
Ávalos-Flores, E., López-Castillo, L.M., Wielsch, N., Winkler, R and Magaña-Ortíz, D. 2020. Protein extract of Bromelia karatas L. containing an ananin-like protease has antibacterial activity against foodborne pathogens Listeria monicytogenes and Salmonella Typhimurium. Archives of Microbiology. Zenodo. http://doi.org/10.5281/zenodo.3986948.
Bradford, M. M. 1976. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 72: 248-254.
Camacho-Hernández, I. L., Chávez-Velázquez, J. A., Uribe-Beltrán, M. J., Ríos-Morgan, A. and Delgado-Vargas, F. 2002. Antifungal activity of fruit extract from Bromelia pinguin. Fitoterapia, 73(5): 411–413.
Chen, J. W., Zhang, S. L and Zhang, L. C. 2004. Sugar transport, metabolism, accumulation and their regulation in fruits. J. Plant. Phy. Mol. Biol. 30 (1) 1–10.
Chízmar, F. C. 2009. Plantas Comestibles de Centroamérica. Instituto Nacional de Biodiversidad. Editorial INBio. Santo Domingo de Heredia, Costa Rica. pp. 358.
Cociancich, S., Ghazi, A., Hetru, A., Hoffman, J.A. and Letellier, L. 1993. Insect defensin, an inducible antibacterial peptide, forms voltage-dependent channels in Micrococcus luteus. J. Biol. Chem. 26: 19239–19245.
Corte-Osorio, L. Y., Martínez-Flores, H. E. and Ortiz-Alvarado, R. 2011. Efecto del consumo de la fibra dietética en la expresión cuantitativa del receptor de butirato GPR34 en colon de ratas. Nutr Hosp. 26(5): 1052–1058.
Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. and Smith, F. 1956. Colorimetric method for determination of sugars and related substances. Chem Anal. 28(3):350-356. Doi: https://doi.org/10.1021/ac60111a017
de Oliveira-Júnior, R. G., de Oliveira, A. P., Guimaraes, A. L., Araújo, E. C. C., Braz-Filho, R., Ovstedal, D. O., Fossen, T. and Almeida, J. R. S. 2014. The first flavonoid isolated from Bromelialaciniosa (Bromeliaceae). J. Pl. Res. 8(14): 558–563.Doi: 10.5897/JMPR2014.5375
Escandon-Rivera, S. M., Andrade-Cetto, A. and Sánchez-Villaseñor, G. 2019. Phytochemical composition and chronic hypoglycemic effect of Bromelia karatas on STZ-NA-induced diabetic rats. JEBCAM, 1: 1–9. Doi: https://doi.org/10.1155/2019/9276953
Eshamah, H., Han, I., Naas, H., Rieck, J. and Dawson, P. 2013. Bactericidal effects of natural tenderizing enzymes on Escherichia coli and Listeria monocytogenes. J. Food Res 2(1): 8-18. Doi:10.5539/jfr.v2n1p8
Fonseca, S., Olivera, F. and Brecht, J. 2002. Modeling respiration rate of fresh fruit and vegetables for modified atmosphere packages: a review. J. Food Eng. 52(2): 99-119. Doi: 10.1016/S0260-8774(01)00106-6
García-Magaña, M. L., González-Borrayo, J., Montalvo-González, E., Rudiño-Piñera, E., Sáyago-Ayerdi, S. G. and Salazar-Leyva, J. A. 2018. Isoelectric focusing effect of reducing agents and inhibitors: partial characterization of proteases extracted from Bromelia karatas. Appl. Biol. Chem. 61(4): 459–467. Doi: 10.1007/s13765-018-0380-6
Hidalgo, M., Cruz, J., Kirk, L., Parkin, L., and García, H. S. 1996. Refrigerated storage and chilling injury development of Manila mangoes (Mangifera indica L.). Acta Hortic. 455(1): 718–725. Doi: 10.17660/ActaHortic.1997.455.91
Hili, P., Evans, C. S., and Veness, R. G. 1997. Antimicrobial action of essential oils: the effect of dimethylsulphoxide on the activity of cinnamon oil. Lett Appl Microbiol. 24(1): 269–275.
Kammann, C. I., Schmidt, H, P., Messerschmidt, N., Linsel, S., Steffens, D., Müller, C., Koyro, H. W., Conte, P and Joseph S. 2015. Plant growth improvement mediated by nitrate capture in co-composted biochar. Sci Rep. 5(11080): 1-12.
Kim, M. H., Park, S. C., Kim, J. Y., Lee, S. Y., Lim, H. T., Cheong, H., Hahm, K. S., and Park, Y. 2006. Purification and characterization of a heat-stable serine protease inhibitor from the tubers of a new potato variety “Golden Valley”. Biochem Bioph Res Co. 346(3): 681–686. Doi: 10.1016/j.bbrc.2006.05.186
Kim, J. Y., Park, S. C., Hwang, I., Cheong, H., Nah, J. W., Hahm, K. S. and Park, Y. 2009. Protease inhibitors from plants with antimicrobial activity. Int J. Mol. Sci. 10(6): 2860–2872. Doi:10.3390/ijms10062860
Liliany, D., Widyarman, A. S., Erfan, E., Sudiono, J. and Djamil, M. S. 2018. Enzymatic activity of bromelain isolated pineapple (Ananas comosus) hump and antibacterial effect on Enterococcus faecalis. SDJ. 2(2): 39–50. Doi: 10.26912/sdj.v2i2.2540
Liu, M., Pirrello, J., Chervin, C., Roustan, J. P. and Bouzayen, M. 2015. Ethylene control of fruit ripening: revisiting the complex network of transcriptional regulation. Plant Physiol. 169(4): 2380–2390. Doi:10.1104/pp.15.01361
Looby, C. I. and Eaton, W. 2014. Effects of Bromelia pinguin (Bromeliaceae) on soil ecosystem function and fungal diversity in the low land forest of Costa Rica. BMC Ecology, 14(12): 1 – 8. Doi: 10.1186/1472-6785-14-12
Looby, C., Hauge, J. B., Barry, D. and Eaton, W. D. 2012. Fungal inhibition by Bromelia pinguin (Bromeliaceae) and its effect on nutrient cycle dynamics. Trop. Ecol. 53(2): 225–234.
López, L. M., Sequeiros, C., Natalucci, C. L., Brullo, A., Maras, B., Barra, D. and Caffini, N. O. 2000. Purification and Characterization of Macrodontain I, a Cysteine Peptidase from Unripe Fruits of Pseudananas macrodontes (Morr.) Harms (Bromeliaceae). Protein Expr. Purif. 18(2): 133–140. Doi: 10.1006prep.1999.116
Lugo-Vargas, A. F., Tarra-Jaramillo, D., Nieto-Guzmán, M. N. and Maldonado-Rodríguez, J. 2016. Caracterización fitoquímica del extracto hidroalcohólico del fruto de Bromelia pinguin y evaluación de su actividad antifúngica frente a un hongo aislado de fruto de cacao (Theobroma cacao L.) en estado de pudrición. RIUQ. 28(2): 49–55. Doi: 10.33975/riuq.vol28n2.14
Mata-Montes de Oca, M., Osuna-García, J. A., Hernández-Estrada, A., Ochoa-Villareal, M. and Tovar-Gómez, B. 2007. Efecto del 1-Metilciclopropeno (1-MCP) sobre la fisiología y calidad de frutos. Rev. Chapingo Ser. Hortic. 13(2): 165–170.
Mañas, E., Bravo, L. and Saura-Calixto, F. 1995. Sources of error in dietary fiber analysis. Food. Chem. 50(4): 331–342. Doi: 10.1016/0308-8146(94)90201-1
Meza-Espinoza, L., García-Magaña, M. L., Vivar-Vera, M. A., Sáyago-Ayerdi, S. G., Chacón-López, A., Becerra-Verdín, E. M., Muy-Rangel, M.D. and Montalvo-González, E. 2017a. Aspectos etnobotánicos, nutricionales y actividad biológica de extractos de frutos del género Bromelia. Rev. Fitotec. Mex. 40 (4): 425–437.
Meza-Espinoza, L., Vivar-Vera, M. A., García-Magaña, M. L., Sáyago-Ayerdi, S., Chacón-López, A., Becerra-Verdín, E. M., and Montalvo-González, E. (2017b). Enzyme activity and partial characterization of proteases obtained from Bromelia karatas fruit and their comparison with Bromelia pinguin proteases. Food Sci. Biotech. 27(2):509–517. Doi: 10.1007-s10068-017-0244-6
Meza-Espinoza, L., Sáyago-Ayerdi, S. G., García-Magaña, M. L., Tovar-Pérez, E. G., Yahia, E. M., Vallejo-Córdoba, B., González-Córdoba, A. F., Hernández-Mendoza, A. and Montalvo-González, E. 2018. Antioxidant capacity of egg, milk and soy protein hydrolysates and biopeptides produced by Bromelia pinguin and Bromelia karatas-derived proteases. Emir. J. Food Agr. 30(2): 122–130.Doi: https://doi.org/10.9755/ejfa.2018.v30.i2.1604
Morales, M., Hernández M.S., Cabezas, M., Barrera, Jaime and Martínez O. (2001). Characterization of the ripening of pineapple (Ananas comosus L. Merrill) cv. India fruit. Agron. colomb , 18(1-3), 63-69.
Montes, C., Amador, M., Cuevas, D. and Cordoba, F. (1990). Subunit structure of karatasin, the proteinase isolated from Bromelia plumieri (karatas). Agric. Biol. Chem. 54(1): 17-24. Doi:10.1271/bbb1961.54.17
Moreno-Hernández, J., Bañuelos-Pérez, M. J., Osuna-Ruíz, I., Salazar-Leyva, J. A., Ramirez-Suarez, J. C. and Mazorra-Manzano, M. A. 2017a. Exploring the milk-clotting properties of extracts from Bromelia pinguin fruit. J. Microbiol. Biotechnol Food Sci. 7(1), 62–66. Doi: 10.15414/jmbfs.2017.7.1.62-66
Moreno-Hernández, J. M., Hernández-Mancillas, X. D., Coss-Navarrete, E. L., Bañuelos-Pérez, M.J., Salazar-Leyva, J.A., Osuna-Ruíz, I., Rodríguez-Tirado, V. A., and Mazorra-Manzano, M. A. 2017b. Partial characterization of milk-clotting and caseinolytic activities of “Aguama” fruit (Bromelia pinguin L.) proteases. Biotecnia 19(2): 19–24.Doi: 10.18633/biotecnia.v19i2.380
Moreno-Hernández, J. M., Hernández-Mancillas, X. D., Coss-Navarrete, E. L., Mazorra-Manzano, M. A., Osuna-Ruíz, I., Rodríguez-Tirado, V. A., and Salazar-Leyva, J. A. 2017c. Partial characterization of the proteolytic properties of an enzymatic extract from “Aguama” Bromelia pinguin L. fruit growth in Mexico. Appl. Biochem. Biotech. 182(1): 191–196. Doi: 10.1007/s12010-016-2319-x
Moyano, D., Osorio, M., Murillo, E., Murillo, W., Solanilla, J., Mendez, J. and Aristizabal, J. 2012. Evaluación de parámetros bromatológicos, fitoquímicos y funcionalidad antioxidante de frutos de Bromelia karatas (Bromeliceae). Vitae, 19(1): S439–S441.
Muy-Rangel, D., Siller-Zepeda, J., Díaz-Pérez, J. and Vález-Torres, B. 2004. Effect of storage conditions and waxing on water status and postharvest quality of cucumber. Rev. Fitotec. Mex. 27(2): 157–165.
Natalucci, C. L., Brullo, A., López, L. M., Hilal, R. M., and Caffini, N. O. 1996. Macrodontin, a new protease isolated from fruits of Pseudananas macrodontes (MORR.) harms (Bromeliacea). J. Food Bioch. 19(6): 443-454. Doi: 10.1111/j.1745-4514.1995.tb00547.x
Nibbering, P. H., E. Ravensbergen, M. M., Welling, L. A., Vanberkel, P. H. C., Vanberkel, E. K. J., and Pauwels, J. H. 2001. Human lactoferrin and peptides derived from its N terminus are highly effective against infections with antibiotic-resistant bacteria. Infect. Immun. 69(3): 1469–1476. Doi: 10.1128/IAI.69.3.1469-1476.2001
Odds, F.C, Brown, A.J. P. and Gow, N.A.R. 2003. Antifungal agents: mechanisms of action. Trends Microbiol. 11(6): 272–279.
Payrol, J. A., Obregón Obregón, W. D., Trejo, S. A., and Caffini, N. O. 2008. Purification and characterization of four new cysteine endopeptidases from fruits of Bromelia pinguin L. grown in Cuba. Protein J. 27(2): 88–96. Doi: 10.1007/s10930-007-9111-2
Pío-León, J. F., López, A. G., Paredes, L. O., Uribe Beltrán, M., Díaz Camacho, S. P., and Delgado Vargas, F. 2009. Physicochemical, nutritional and antibacterial characteristics of the fruit of Bromelia pinguin L. Plant Foods Hum. Nutr. 64(3): 181–187. Doi:10.1007/s11130-009-0125-0
Romero-Garay, M.G., Martínez-Montaño, E., Hernández-Mendoza, A., Vallejo-Cordoba, B., González-Córdova, A. F., Montalvo-González, E., and García-Magaña, M. L. 2020. Bromelia karatas and Bromelia pinguin: sources of plant proteases used for obtaining antioxidant hydrolysates from chicken and fish by-products. Applied Biol Chem. 63(1): 1-11. Doi: https://doi.org/10.1186/s13765-020-00525-x
Rubio, W., Ramón, J., Magaña, D., Cuevas, L., and Ortiz, E. 2018. Evaluación de la actividad antioxidante del extracto proteico de piñuela (Bromelia spp.). C y Tec de Alim, 28(1): 11–16.
Ruiz-Ruiz, J. C., Sierra, J. R., Arias-Argaez, C., Magaña-Ortiz, D., and Ortiz-Vázquez, E. 2017. Antibacterial activity of proteins extracted from the pulp of wild edible fruit of Bromelia pinguin L. Int. J. Food Prop. 20(1): 220–230. Doi: 10.1080/10942912.2016.1154572
Sargent, S.A., Ritenour, M.A. and Brecht J.K. 2000. Handling, cooling, and sanitation techniques for maintaining postharvest quality (en línea). University of Florida, Cooperative Extension Service, HS719. http://edis.ifas.ufl.edu/CV115.
Segura, S., Fresnedo, J., Mathurian, C., López, J., Andrés, J., and Muratalla, A. 2018. The edible fruit species in Mexico. Genet. Resour. Crop Ev. 65(2):1767-1793. Doi: 10.1007/s10722-018-0652-3
Siller-Zepeda, J., Muy-Rangel, D., Báez-Sañudo, M., Araiza-Lizarde, E., and Ireta-Ojeda, A. 2009. Postharvest quality of mango cultivars of early, middle and late seasons. Rev. Fitotec. Mex. 36(1): 45–52.
Tafolla-Arellano, J. C., González-León, A. and Tiznado-Hernández, E. 2013. Composición, fisiología y biosíntesis de la cutícula en plantas. Rev. Fitotec. Mex. 36(1): 3 – 12.
Thevissen, K., Terras, F.R.G., and Broekaert, W.F. 1999. Permeabilization of fungal membranes by plant defensins inhibits fungal growth. Appl. Environ. Microbiol. 65(12): 5451–5458.
Tovar, B., Garcia, H., and Mata, M. 2001. Physiology of pre-cut mango II. Evolution of organic acids. Food Res. Int. 34(8): 705–714. DOI: 10.1016/S0963-9969(01)00092-8
Wadhwani, T., Desai, K., Patel, D., Lawani, D., Bahaley, P., Joshi, P. and Kothari, V. 2009. Effect of various solvents on bacterial growth in context of determining MIC of various antimicrobials. Internet J. of Microbiol. 7(1): S/P.
World Health Organization (WHO). 2017. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New antibiotics. http://www.infobioquimica.com/new/wp-content/uploads/2017/02/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf
Zea-Hernández, L.O., Saucedo-Veloz, C., Cruz-Huerta, N., Ramírez-Gúzman, M. E., and Robles-González, M. M. 2016. Evaluation of post-harvest applications of gibberellic acid the quality and shelf life of three varieties of Mexican lime. Rev. Chapingo Ser. Hortic, 22(1): 17–26. Doi: 10.5154/r.rchsh.2015.01.005

Published

2021-05-21

How to Cite

Efigenia, M.-G., A.-E. L. Miguel, M.-O. A. O. A. Pay, S.-B. J. Alberto, and G.-M. M. de Lourdes. “Physiological and Physicochemical Behavior of Guamara (Bromelia Pinguin) and Cocuixtle (Bromelia Karatas) Fruits, As Well As the Antibacterial Effect of Their Pre-Purified Proteases”. Emirates Journal of Food and Agriculture, vol. 33, no. 4, May 2021, pp. 277-86, doi:10.9755/ejfa.2021.v33.i4.2686.

Issue

Section

Research Article