Physicochemical characterization and antioxidant activity of wild Physalis spp. genotypes

  • Aleyda Pérez- Herrera Consejo Nacional de Ciencia y Tecnología (CONACYT). Av. Insurgentes Sur 1582, Col. Crédito Constructor, Del. Benito Juárez C.P.: 03940, Ciudad de México. Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional-Unidad Oaxaca. Hornos No. 1003, Col. Noche Buena, Santa Cruz Xoxocotlán, 71230, Oaxaca, México.
  • Gabino Alberto Martínez- Gutiérrez Investigación para el Desarrollo Integral Regional-Unidad Oaxaca. Hornos No. 1003, Col. Noche Buena, Santa Cruz Xoxocotlán, 71230, Oaxaca, México.
  • Isidro Morales Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional-Unidad Oaxaca. Hornos No. 1003, Col. Noche Buena, Santa Cruz Xoxocotlán, 71230, Oaxaca, México.
  • Marco Antonio Sánchez- Medina Departamento de Ingeniería Química y Bioquímica, Instituto Tecnológico de Oaxaca. Av. Ing. Víctor Bravo Ahuja No. 125 Esq. Calz. Tecnológico, C.P. 68030, Oaxaca, México.
  • Cirenio Escamirosa- Tinoco Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional-Unidad Oaxaca. Hornos No. 1003, Col. Noche Buena, Santa Cruz Xoxocotlán, 71230, Oaxaca, México.

Abstract

The center of origin and domestication of Physalis spp. is Mexico, where 70 wild species and only two cultivated species are found. Fruits of wild husk tomato are collected by farmers for home consumption or for sale in local markets, where prices are higher than for the cultivated husk tomato. Despite their economic and nutritional importance, they have been little studied. The objective of this study was to determine phytochemical properties, nutritional value, total contents of phenol, anthocyanins and flavonoids, and the antioxidant capacity of the fruits of five wild genotypes of Physalis spp (Quialana, Jalieza, Vigallo, Ejutla and Miahuatlán), collected in the corn harvest season in five localities of Oaxaca, Mexico. The genotypes Quialana and Miahuatlán had the best physical characteristics, but their antioxidant capacity was lower than that of the genotypes Jalieza, Vigallo and Ejutla, which did not exhibit physical characteristics that are attractive for consumers. Moreover, the high contents of phenols and flavonoids, as well as the antioxidant capacity of all the wild genotypes studied, showed that Physalis spp. is an option for more frequent inclusion in the population’s diet. However, because of food globalization issues, production, commercialization and consumption of these wild species is disappearing.

References

Abdel-Aal, E., and P. Hucl. 1999. A rapid method for quantifying total anthocyanins in blue aleurone and purple pericarp wheats. Cereal Chem. 76: 350-354.
Akbudak, B. 2010. Effects of harvest time on the quality attributes of processed and non-processed tomato varieties. Int. J. Food. Sci. Technol. 45: 334-343.
AOAC. 2000. Official methods of analysis. 17th ed. Official Methods of Analysis of AOAC International. Gaithersburg (MD): CAB publisher.
Bergier, K., E. Kuzniak, and M. Sklodowska. 2012. Antioxidant potential of Agrobacterium-transformed and non-transformed Physalis ixocarpa plants grown in vitro and ex vitro. Postepy. Hig. Med. Dosw. 66: 976-982.
Blum, A., M. Merei, A. Karem, N. Blum, S. Ben-Arzi, I. Wirsansky and K. Khazim. 2006. Effects of tomatoes on the lipid profile. Clin Invest Med. 29: 298-300.
Bock, M. A., J. Sanchez-Pilcher, L. J. McKee and M. Ortiz. 1995. Selected nutritional and quality analyses of tomatillos (Physalis ixocarpa). Plant Foods Hum. Nutr. 48: 127-133.
Caballero, J., A. Casas, L. Cortés and C. Mapes. 1998. E. Atacameños (Ed.), Patrones en el conocimiento, uso y manejo de plantas en pueblos de México, vol. 16 (pp. 1-15).
Caballero, J., B. Rendón, S. Rebollar and M. A. Martínez. 2001. Uso y Manejo tradicional de los Recursos Vegetales en México. In UAM-Semarnat (Ed.), Estudio sobre la relación entre seres humanos y plantas en los albores del siglo XXI, pp. 79-100.
Casas, A., J. L.Viveros and Caballero. 1994. Consejo Nacional para la Cultura y las Artes. (Ed.), Etnobotánica mixteca: sociedad, cultura y recursos naturales en la Montaña de Guerrero, México.
Chang, J. C., C. C. Lin, S. J. Wu, D. L. Lin, S.S Wang, C. L. Miaw and L. T. Ng. 2008. Antioxidative and hepatoprotective effects of Physalis peruviana extract against acetaminophen-induced liver injury in rats. Pharm. Biol. 46: 724-731.
Chen, L., X. Xin, Q. Yuan, D. Su and W. Liu. 2014. Phytochemical properties and antioxidant capacities of various colored berries. Journal of the Science of Food and Agriculture, 94: 180-188.
D’Arcy, W. G. 1991. The Solanaceae since 1976, with a review of its biogeography. In J. Hawkes, R. Lester, M. Nee & N. Estrada-R (Eds.), Solanaceae III. Taxonomy, Chemistry, Evolution, (pp. 75-137). London, Royal Botanic Gardens/ Linnean Society of London.
El Sheikha, A. F., M. S. Zaki, A. A. Bakr, M. M. El Habashy and D. Montet. 2010. Biochemical and sensory quality of Physalis (Physalis pubescens L.) juice. Journal of Food Processing and Preservation. 34: 541-555.
FAO. Food and Agriculture Organization of the United Nation. Food and Nutrition paper. Food energy-methods of analysis and conversion factors. Report of a technical workshop. Rome Italy.
Francis, F. J. and F. M. Clydesdale. 1975. Food colorimetry: Theory and applications.: The Avi Publishing Company, Inc.
Gonzalez-Mendoza, D., D. Ascencio-Martinez, A. Hau-Poox, V. Mendez-Trujillo, O. Grimaldo-Juarez, J. F. Santiaguillo-Hernandez, L. Cervantes-Díaz and S. Aviles-Marin. 2011. Phenolic compounds and physicochemical analysis of Physalis ixocarpa genotypes. Scientific Research and Essays. 6: 3808-3814.
Hernández-Suárez, M., E. Rodríguez-Rodríguez and C. Díaz-Romero. 2008a. Analysis of organic acid content in cultivars of tomato harvested in Tenerife. European Food Research and Technology. 226: 423-435.
Hernández-Suárez, M., E. M. Rodríguez-Rodríguez and C. Díaz-Romero. 2008b. Chemical composition of tomato (Lycopersicon esculentum) from Tenerife, the Canary Islands. Food Chemistry. 106: 1046-1056.
Huang, C. S., Y. E. Fan, C. Y. Lin and M. L. Hu. 2007. Lycopene inhibits matrix metalloproteinase-9 expression and down-regulates the binding activity of nuclear factor-kappa B and stimulatory protein-1. J. Nutr. Biochem. 18: 449-456.
Jiménez-Santana, E., V. Robledo-Torres, A. Benavides-Mendoza, F. Ramírez-Godina, H. Ramírez-Rodríguez and E. de la Cruz-Lázaro. 2012. Calidad del fruto de genotipos tetraploides de tomate de cáscara (Physalis ixocarpa Brot.). Universidad y Ciencia, Trópico Húmedo. 28: 153-161.
Lan, Y. H., F. R. Chang, M. J. Pan, C. C. Wu, S. J. Wu, S. L. Chen, S. S. Wang, M. J. Wu and Y. C. Wu. 2009. New cytotoxic withanolides from Physalis peruviana. Food Chem. 116: 462-469.
Magaña-Lira, N., J. F. Santiaguillo-Hernández and O. Grimaldo-Juarez. 2011. El mejoramiento participativo de tomate de cáscara como estrategia de conservación in situ. SNICS, SAGARPA, INIFAP, UACh, Texcoco, Estado de México. 25 pp.
Matthaus, B. 2002. Antioxidant activity of extracts obtained from residues of different oilseeds. J. Agric. Food Chem. 50: 3444-3452.
McGuirre-Raymond, G. 1992. Reporting of Objective Color Measurements. HortScience. 27: 1254-1255.
Montes-Hernández, S. and A. Aguirre. 1994. Etnobotánica del tomate mexicano (Physalis philadelphica Lam.). Revista de Geografía Agrícola. 20: 163-172.
Navarro-Gonzalez, I., and M. J. Periago. 2016. Is tomato a healthy and/or functional food?. Revista Española de Nutrición Humana y Dietética 20(4): 323-335.
Navez, B., M. Letard, D. Graselly and M. Jost. 1999. Les crite ́res de qualite ́ de la tomate. Infos-Ctifl. 155: 41-47.
Palozza, P., R. Simone, A. Catalano, G. Monego, A. Barini, M. C. Mele, N. Parrone, S. Trombino, N. Picci and F. O. Ranelletti. 2011. Lycopene prevention of oxysterol-induced proinflammatory cytokine cascade in human macrophages: inhibition of NF-kappaB nuclear binding and increase in PPARgamma expression. J. Nutr. Biochem. 22: 259-268.
Pérez, L. A.B., B. G. Palacios, and A. L. C. Becerra. 2014. Sistema Mexicano de Alimentos Equivalentes. 4ta. Ed. Fomento de Nutrición y Salud, A.C. México. 164p.
Puente, L., C. Pinto, E. Castro and M. Cortés. 2011. Physalis peruviana Linnaeus, the multiple properties of a highly functional fruit: A review. Food Research International. 44: 1733-1744.
Qiu, L., F. Zhao, Z. H. Jiang, L. X. Chen, Q. Zhao, H. X. Liu, X. S. Yao and F. Qiu. 2008. Steroids and flavonoids from Physalis alkekengi var. franchetii and their inhibitory effects on nitric oxide production. J. Nat. Prod. 71: 642-646.
Raffo, A., C. Leonardi, V. Fogliano, P. Ambrosino, M. Salucci, L. Gennaro, R. Bugianesi, F. Giuffrida and G. Quaglia. 2002. Nutritional value of cherry tomatoes (Lycopersicon esculentum Cv. Naomi F1) harvested at different ripening stages. J. Agric. Food Chem. 50: 6550-6556.
Ramadan, M. 2011. Bioactive phytochemicals nutritional value, and functional properties of cape gooseberry (Physalis peruviana L.): An overview. Food Research International 44: 1830-1836.
Ramadan, M. F., and J. T. Moersel. 2007. Impact of enzymatic treatment on chemical composition, physicochemical properties and radical scavenging activity of goldenberry (Physalis peruviana L.) juice. J. Sci. Food Agric. 87: 452-460.
SAS. 2002. Statistical Analysis System/STAT. User´s guide, software version 9.0. SAS Institute Inc. Cary, N.C. EEUU. 4424 pp.
Shahidi, F. and P. K. Wanasundara. 1992. Phenolic antioxidants. Crit. Rev. Food Sci. Nutr. 32: 67-103.
Sies, H. and W. Stahl. 1998. Lycopene: antioxidant and biological effects and its bioavailability in the human. Proc. Soc. Exp. Biol. Med. 218: 121-124.
Singleton, V. L. and J. L. Rossi. 1965. Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents. Am. J. Enol. Vitic. 16: 144-158.
Soares, M. B., D. Brustolim, L. A. Santos, M. C. Bellintani, F. P. Paiva, Y. M. Ribeiro, T. C. Tomassini and R. Ribeiro Dos Santos. 2006. Physalins B, F and G, seco-steroids purified from Physalis angulata L., inhibit lymphocyte function and allogeneic transplant rejection. Int. Immunopharmacol. 6: 408-414.
The Plant List (2013). Version 1.1. Published on the Internet; http://www.theplantlist.org/ (accessed 10 june 2021).
Tsitsimpikou, C., K. Tsarouhas, N. Kioukia-Fougia, C. Skondra, P. Fragkiadaki, P. Papalexis, P. Stamatopoulos, I. Kaplanis, A. W. Hayes, A. Tsatsakis and E. Rentoukas. 2014. Dietary supplementation with tomato-juice in patients with metabolic syndrome: a suggestion to alleviate detrimental clinical factors. Food Chem. Toxicol. 74: 9-13.
Vargas-Ponce, O., L. F. Pérez-Álvarez, P. Zamora-Tavares and A. Rodríguez-Contreras. 2011. Assesing genetic diversity in Mexican husk tomato species. Plan. Mol. Biol. Rep. 29: 733-738.
Zamora-Tavares, M., O. Vargas-Ponce, J. Sánchez and D. Cabrera-Toledo. 2015. Diversity and genetic structure of husk tomatoes (Physalis philadelphica Lam.) in Mexico. Genet. Resour. Crop Evol. 62: 141-153.
Zovko-Koncic, M., D. Kremer, K. Karlovic and I. Kosalec. 2010. Evaluation of antioxidant activities and phenolic content of Berberis vulgaris L. and Berberis croatica Horvat. Food Chem. Toxicol. 48: 2176-2180.
Statistics
229 Views | 167 Downloads
How to Cite
Herrera, A. P.-, G. A. M.- Gutiérrez, I. Morales, M. A. S.- Medina, and C. E.- Tinoco. “Physicochemical Characterization and Antioxidant Activity of Wild Physalis Spp. Genotypes”. Emirates Journal of Food and Agriculture, Vol. 33, no. 6, Aug. 2021, pp. 458-64, doi:https://doi.org/10.9755/ejfa.2021.v33.i6.2710. Accessed 29 Nov. 2022.
Section
Research Article