Rapid and nondestructive estimations of chlorophyll concentration in date palm (Phoenix dactylifera L.) leaflets using SPAD-502+ and CCM-200 portable chlorophyll meters

  • Thuraya Almansoori Department of Biology, College of Science, University of Bahrain, Sakheer, Kingdom of Bahrain
  • Majeda Salman Department of Mathematics, College of Science, University of Bahrain, Sakheer, Kingdom of Bahrain
  • Mariam Aljazeri Department of Biology, College of Science, University of Bahrain, Sakheer, Kingdom of Bahrain

Abstract

Date palm (Phoenix dactylifera L.) is the oldest known tree grown in the world’s arid regions. It has been cultivated for centuries because of its enormous cultural, agricultural, and environmental benefits. Recently date palm groves have been declined drastically due to anthropogenic, abiotic and, biotic stresses. Attaining sustainable farming and optimum crop production requires frequent monitoring of the physiological status of date palms. This demands rapid and non-destructive estimation of chlorophyll concentration in date palm leaflets overtime. In this study, four date palm cultivars, exhibiting distinct concentrations of chlorophyll, were used to assess the potential of using SPAD-502+ and CCM-200 portable chlorophyll meters to estimate the concentration of chlorophyll in date palm leaflets. Regression analyses were performed to model the relationship between the absolute concentration of chlorophyll measured in vitro and the optic indices of the two portable chlorophyll meters (SPAD and CCI). The results revealed that polynomial and power prediction models, which demonstrated remarkably close fits to each another, are the best functions to parameterize the relationships. The calibration models developed in this study were very strong and recorded high coefficient of determinations along with low relative errors for both the cultivar-specific fits (R2 ≥ 0.89; Error % ≤ 18.3) as well as the generic species-specific fits (R2 ≥ 0.822; Error % ≤ 25.0). The results confirmed that both SPAD-502+ and CCM-200 are equally effective tools for rapid and nondestructive estimation of chlorophyll concentration in date palm leaflets.


 

References

Abbas, M., F. Hafeez, A. Ali, M. Farooq, M. Latif, M. Saleem and A. Gaffer. 2014. Date palm white scale (Parlatoria blanchardii T): a new threat to date industry in Pakistan. J. Entomol. Zool. Stud. 2:49–52.
Agathokleous, E., Z. Feng and J. Peñuelas. 2020. Chlorophyll hormesis: Are chlorophylls major components of stress biology in higher plants? Science of the Total Environment, 726:138637.
Al-Dosary, N., S. AlDobai and J. Faleiro. 2016. Review on the Management of Red Palm Weevil Rhynchophorus ferrugineus Olivier in Date Palm Phoenix dactylifera L. Emirates Journal of Food and Agriculture. 28: 34–44.
Almansoori, T. A., M. A. Al-Khalifa and A. M. A. Mohamed. 2015. Date Palm Status and Perspective in Bahrain. In: J. Al-Khayri, S. Jain and D. Johnson (Eds.), Date Palm Genetic Resources and Utilization. Volume 2: Asia and Europe (pp. 353-386). Dordrecht: Springer.
Arinkin, V., I. Digel, D. Porst, A. Artmann and G. Artmann. 2014. Phenotyping date palm varieties via leaflet cross-sectional imaging and artificial neural network application. BMC Bioinformatics. 15(1): 55.
Berg A. K. and T. D. Perkins. 2004. Evaluation of a portable chlorophyll meter to estimate chlorophyll and nitrogen contents in sugar maple (Acer saccharum Marsh.) leaves. Forest Ecology and Management. 200(1-3): 113-117.
Bresson, J., S. Bieker, L. Riester, J. Doll and U. Zentgraf. 2017. A guideline for leaf senescence analyses: from quantification to physiological and molecular investigations. Journal Of Experimental Botany. 69(4): 769-786.
Casa, R., F. Castaldi, S. Pascucci and S. Pignatti. 2014. Chlorophyll estimation in field crops: an assessment of handheld leaf meters and spectral reflectance measurements. The Journal of Agricultural Science. 153(5): 876-890.
Cassol, D., F. Silva, A. Falqueto and M. Bacarin. 2008. An evaluation of non-destructive methods to estimate total chlorophyll content. Photosynthetica. 46(4): 634-636.
Cerovic Z.G., G. Masdoumier, N. Ben Ghozlen and G. Latouche. 2012. A new optical leaf-clip meter for simultaneous non-destructive assessment of leaf chlorophyll and epidermal flavonoids. Physiologia Plantarum. 146: 251-260.
Coste, S., C. Baraloto, C. Leroy, E. Marcon, A. Renaud, A. D. Richardson, J. Roggy, H. Schimann, J. Uddling and B. Hérault. 2010. Assessing foliar chlorophyll contents with the SPAD-502 chlorophyll meter: a calibration test with thirteen tree species of tropical rainforest in French Guiana. Annals of Forest Science. 67(6): 607-607.
de Souza, R., R. Grasso, M. T. Peña-Fleitas, M. Gallardo, R. B. Thompson and F. M. Padilla. 2020. Effect of Cultivar on Chlorophyll Meter and Canopy Reflectance Measurements in Cucumber. Sensors, 20(2): 509.
Dong, T., J. Shang, J. M. Chen, J. Liu, B. Qian, B. Ma, M. J. Morrison, C. Zhang, Y. Liu, Y. Shi, H. Pan and G. Zhou. 2019. Assessment of Portable Chlorophyll Meters for Measuring Crop Leaf Chlorophyll Concentration. Remote Sensing. 11(22): 2706.
El-Juhany, I. L. 2010. Degradation of Date Palm Trees and Date Production in Arab Countries: Causes and Potential Rehabilitation. Australian Journal of Basic and Applied Sciences. 4(8): 3998-4010.

Erskine, W., A. Moustafa, A. Osman, Z. Lashine, A. Nejatian, T. Badawi and S. Ragy. 2014. Date Palm in the GCC countries of the Arabian Peninsula. International Center for Agricultural Research in the Dry Areas (ICARDA).
Esechie H. A. and A. Al-Falahi. 2007. Chlorophyll Studies in Date Palm (Phoenix dactylifera L.). ASA Southern Branch Annual Meeting. Retrieved on April 23, 2021 from: https://a-c-s.confex.com/crops/2007srb/techprogram/P29530.HTM
Fukshansky, L., A. Remisowsky, J. McClendon, A. Ritterbusch, T. Richter and H. Mohr. 1993. Absorption spectra of leaves corrected for scattering and distributional error: A radiative transfer and absorption statistics treatment. Photochemistry and Photobiology. 57(3): 538-555.
Gitelson, A., Y. A. Gritz, and M. Merzlyak. 2003. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal of Plant Physiology. 160(3): 271-282.
Hawkins, T., E. Gardiner and G. Comer. 2009. Modeling the relationship between extractable chlorophyll and SPAD-502 readings for endangered plant species research. Journal for Nature Conservation, 17(2): 123-127.
Jifon, J., J. Syvertsen and E. Whaley. 2005. Growth Environment and Leaf Anatomy Affect Nondestructive Estimates of Chlorophyll and Nitrogen in Citrus sp. Leaves. Journal of the American Society for Horticultural Science. 130(2): 152-158.
Kalaji, H., P. Dąbrowski, M. Cetner, I. Samborska, I. Lukasik, M. Brestic, M. Zivcak, H. Tomasz, J. Mojski, H. Kociel and B. Panchal. 2016. A comparison between different chlorophyll content meters under nutrient deficiency conditions. Journal of Plant Nutrition, 40(7): 1024-1034.
Li, Y., N. He, J. Hou, L. Xu, C. Liu, J. Zhang, Q. Wang, X. Zhang and X. Wu. 2018. Factors Influencing Leaf Chlorophyll Content in Natural Forests at the Biome Scale. Frontiers in Ecology and Evolution. 6, 64.
Lichtenthaler, H. K. and C. Buschmann. 2001. Chlorophylls and Carotenoids: Measurement and Characterization by UV-VIS Spectroscopy. In: R.E. Wrolstad, T. E. Acree, H. An, E. A. Decker, M. H. Penner, D. S. Reid, S. J. Schwartz, C. F. Shoemaker and P. Sporns (Eds.), Current Protocols in Food Analytical Chemistry (pp. F4.3.1-F4.3.8). New York: John Wiley and Sons.
Markwell J., J. C. Osterman, and J. L. Mitchell. 1995. Calibration of the Minolta SPAD-502 leaf chlorophyll meter. Photosynth. Res. 46: 467– 472.
Mattila, H., D. Valev, V. Havurinne, S. Khorobrykh, O. Virtanen, M. Antinluoma, K. Mishra and E. Tyystjärvi. 2018. Degradation of chlorophyll and synthesis of flavonols during autumn senescence—the story told by individual leaves. Ann Bot PLANTS, 10: ply028.
Melo, H. F., E. R. de Souza, and J. C. Cunha. 2017. Fluorescence of chlorophyll a and photosynthetic pigments in Atriplex nummularia under abiotic stresses. Revista Brasileira de Engenharia Agrícola e Ambiental. 21(4): 232-237.
Minocha, R., G. Martinez, B. Lyons, and S. Long. 2009. Development of a standardized methodology for quantifying total chlorophyll and carotenoids from foliage of hardwood and conifer tree species. Canadian Journal of Forest Research. 39(4): 849-861.
Niazi, S., I. M. Khan, I. Pasha, S. Rasheed, S. Ahmad and M. Shoaib. 2017. Date Palm: Composition, Health Claim and Food applications. International Journal of Public Health and Health Systems. 2(1): 9-17.
Novichonok, E., A. Novichonok, J. Kurbatova and E. Markovskaya. 2016. Use of the atLEAF+ chlorophyll meter for a nondestructive estimate of chlorophyll content. Photosynthetica. 54(1): 130-137.
Padilla, F., R. de Souza, M. Peña-Fleitas, M. Gallardo, C. Giménez and R. Thompson. 2018. Different Responses of Various Chlorophyll Meters to Increasing Nitrogen Supply in Sweet Pepper. Frontiers in Plant Science. 9: 1752.
Pal, P., R. Singh and R. Prasad. 2012. Non-destructive estimation of chlorophyll and nitrogen content in leaf of Rosa damascena (Mill). Soil Science and Plant Nutrition. 58(5): 604-610.
Parry, C., J. Blonquist and B. Bugbee. 2014. In situ measurement of leaf chlorophyll concentration: analysis of the optical/absolute relationship. Plant, Cell & Environment. 37(11): 2508-2520.
Pavlovic, D., B. Nikolic, S. Djurovic, H. Waisi, A. Andjelkovic and D. Marisavljevic. 2014. Chlorophyll as a measure of plant health: Agroecological aspects. Pesticidi I Fitomedicina. 29(1): 21-34.
Peng, S., F. Garcia, R. Laza, A. Sanico, R. Visperas and K. Cassman. 1996. Increased N-use efficiency using a chlorophyll meter on high-yielding irrigated rice. Field Crops Research. 47(2-3): 243-252.
Piekielek, W., R. Fox, J. Toth and K. Macneal. 1995. Use of a Chlorophyll Meter at the Early Dent Stage of Corn to Evaluate Nitrogen Sufficiency. Agronomy Journal. 87(3): 403-408.
Putra, M., A. Darmawan, I. Wahdini and A. Abasaeed. 2017. Extraction of chlorophyll from pandan leaves using ethanol and mass transfer study. Journal of the Serbian Chemical Society. 82(7-8): 921-931.
Richardson, A. D., S. P. Duigan and G. P. Berlyn. 2002. An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytologist. 153(1): 185-194.
Rivera, D., C. O. de Castro, E. Carreño, C. Inocencio, F. Alcaraz, S. Ríos, J. Palazón, L. Vázquez and E. Laguna. 2008. Morphological systematics of date-palm diversity (Phoenix Arecaceae) in Western Europe and some preliminary molecular results. Acta Hort. 799:97–104.
Sibley, J., D. Eakes, C. Gilliam, G. Keever, W. Dozier and D. Himelrick. 1996. Foliar SPAD-502 Meter Values, Nitrogen Levels, and Extractable Chlorophyll for Red Maple Selections. HortScience. 31(3): 468-470.
Silla, F., A. González-Gil, M. González-Molina, S. Mediavilla and A. Escudero. 2010. Estimation of chlorophyll in Quercus leaves using a portable chlorophyll meter: effects of species and leaf age. Annals of Forest Science. 67(1): 108-108.
Sim, C. C., A. R. Zaharah, M. S. Tan and K. J. Goh. 2015. Rapid Determination of Leaf Chlorophyll Concentration, Photosynthetic Activity and NK Concentration of Elaies guineensis Via Correlated SPAD-502 Chlorophyll Index. Asian Journal of Agricultural Research. 9(3): 132-138.
Slattery, R., A. Grennan, M. Sivaguru, R. Sozzani and D. Ort. 2016. Light sheet microscopy reveals more gradual light attenuation in light-green versus dark-green soybean leaves. Journal of Experimental Botany. 67(15): 4697-4709.
Steele, M., A. Gitelson and D. Rundquist. 2008. A Comparison of Two Techniques for Nondestructive Measurement of Chlorophyll Content in Grapevine Leaves. Agronomy Journal. 100(3):779–782.
Shareef, H., G. Abdi and S. Fahad. 2020. Change in photosynthetic pigments of Date palm offshoots under abiotic stress factors. Folia Oecologica. 47(1): 45-51.
Sharma A., V. Kumar, B. Shahzad, M. Ramakrishnan, G. P. S. Sidhu, A. S. Bali, N. Handa, D. Kapoor, P. Yadav, K. Khanna, P. Bakshi, A. Rehman, S. K. Kohli, E. A. Khan, R. D. Parihar, H. Yuan, A. K. Thukral, R. Bhardwaj, B. Zheng. (2019). Photosynthetic Response of Plants Under Different Abiotic Stresses: A Review. Journal of Plant Growth Regulation. 39(2): 509-531.
Su, S., Y. Zhou, J. Qin, W. Yao and Z. Ma. (2010). Optimization of the Method for Chlorophyll Extraction in Aquatic Plants. Journal of Freshwater Ecology. 25(4): 531-538.
Taha, K. K. and F. M. Al Ghtani. 2015. Determination of the elemental contents of date palm (Phoenix dactylifera L.) from Kharj Saudi Arabia. World Scientific News. 6:125–135.
Taïbi, K., F. Taïbi, L. A. Abderrahim, A. Ennajah, M. Belkhodja and J. M. Mulet. 2016. Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. South African Journal of Botany. 105: 306-312.
Uddling, J., J. Gelang-Alfredsson, K. Piikki and H. Pleijel. 2007. Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings. Photosynthesis Research. 91(1): 37-46.
Silva, D. V., L. D. Anjos, E. Brito-Rocha, A. C. Dalmolin and M. S. Mielke. 2016. Calibration of a multi-species model for chlorophyll estimation in seedlings of Neotropical tree species using hand-held leaf absorbance meters and spectral reflectance. iForest - Biogeosciences and Forestry. 9(5): 829-834.
World Meteorological Organization. 2018. Monthly Weather Summary - December 2018 - Kingdom of Bahrain. Retrieved on February 12, 2020 from: https://public.wmo.int/en/media/news-from-members/monthly-weather-summary-december-2018-kingdom-of-bahrain.
Wu, J., S. Chang and S. Wang. 2002. Extraction and determination of chlorophylls from moso bamboo (Phyllostachys pubescens) culm. Journal of Bamboo and Rattan. 1(2): 171-180.
Yaish, M. and P. Kumar. 2015. Salt tolerance research in date palm tree (Phoenix dactylifera L.), past, present, and future perspectives. Frontiers in Plant Science. 18(6): 348-359.
Zaid, A. and P. F. De Wet. 1999. Chapter I Botanical and Systematic Description of Date Palm. FAO Plant Production and Protection Papers 1-28.
Statistics