Inhibitory effect of Sargassum latifolium extract on hypoxia pathway in colon cancer cells
Abstract
Sargassum latifolium, (Turner) C. Agarth, 1820, is an edible brown alga that was collected from red seashores in Egypt. Colon cancer is a lethal disease world-wide. Hypoxia is a key player in progressive colon tumor growth and stemness. This work was planned to extract water-soluble polysaccharide from S. latifolium, to separate its fractions (SL1, SL2, SL3, and SL4) and hence to investigate their anti-hypoxia characteristics in colon cancer HCT-116 cells. Algal fractions cytotoxicity was assayed by MTT; DNA staining was used to analyze apoptosis and necrosis; total hypoxia status was assessed by pimonidazole, HIF-1α and HIF-1β were estimated by ELISA, and hsa-miRNA-21-5p and hsa-miRNA-210-3p were analyzed by qPCR. The results indicated that SL1 and SL4 are cytotoxic agents against HCT-116 cells through enhancing apoptosis. SL1and SL4 were potent inhibitor of total cell hypoxia (p < 0.001). Both fractions significantly suppressed the expression of miR-21 (p < 0.01) and miR-210 (p < 0.001), and the concentration of HIF-1α protein (p < 0.01 and p < 0.001, respectively), while only SL1 inhibited HIF-1β protein concentration (p < 0.05). Taken together S. latifolium polysaccharide extract fractions SL1 and SL4 exhibited anti-hypoxic property in HCT-116 cells through mechanistic role in the expression of hypoxia regulators miRNA-21 and miRNA-210, and accordingly in HIF-1α and HIF-1β biosynthesis.
References
Baskić, D., S. Popović, P. Ristić and N. N. Arsenijević. 2006. Analysis of cycloheximide-induced apoptosis in human leukocytes: fluorescence microscopy using annexin V/propidium iodide versus acridine orange/ethidium bromide. Cell Biol. Int. 30: 924-932.
Birner, P., M. Schindl, A. Obermair, C. Plank, G. Breitenecker and G. Oberhuber. 2000. Overexpression of hypoxia-inducible factor 1alpha is a marker for an unfavorable prognosis in early-stage invasive cervical cancer. Cancer Res. 60: 4693-4696.
Burtin, P. 2003. Nutritional value of seaweeds. Electronic J. Environ. Agric. Food Chem. 2: 498-503.
Dar, A., H. S. Baig, S. M. Saifuallah, V. U. Ahmad, N. Yasmeen and M. Nizamuddin. 2007. Effect of seasonal variation on the anti-inflammatory activity of Sargassum wightii growing on the N. Arabian Sea coast of Pakistan. J. Exp. Mar. Boil. Ecol. 351: 1-9.
Dery, M. A., M. D. Michaud and D. E. Richard. 2004. Hypoxia-inducible factor 1: regulation by hypoxic and non-hypoxic activators. Int. J. Biochem. Cell Bio. 37: 535-540
D'Ignazio, L., D. Shakir, M. Batie, H. A. Muller and S. Rocha. 2020. HIF-1β Positively Regulates NF-κB Activity via Direct Control of TRAF6. Int. J. Mol. Sci. 21: 3000.
Ellamie, A. M., W. A. Fouda, W. M. Ibrahim and G. Ramadan. 2020. Dietary supplementation of brown seaweed (Sargassum latifolium) alleviates the environmental heat stress-induced toxicity in male Barki sheep (Ovis aries). J. Therm. Biol. 89: 102561.
Ercin, M. E., Ö. Bozdoğan, T. Çavuşoğlu, N. Bozdoğan, P. Atasoy and M. Koçak. 2019. Hypoxic Gene Signature of Primary and Metastatic Melanoma Cell Lines: Focusing on HIF-1β and NDRG-1. Balkan Med. J. 37: 15-23.
Fasanaro, P., Y. D'Alessandra, V. Di Stefano, R. Melchionna and S. Romani. 2008. MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J. Biol. Chem. 283: 15878-15883.
Gamal-Eldeen, A. M., M. A. M. Abo-Zeid and E. F. Ahmed. 2013. Anti-genotoxic effect of the Sargassum dentifolium extracts: Prevention of chromosomal aberrations, micronuclei, and DNA fragmentation. Exp. Tox. Path. 65: 27-34.
Gamal-Eldeen, A. M., E. F. Ahmed and M. A. M. Abo-Zeid. 2009. In vitro cancer chemopreventive properties of polysaccharide extract from the brown alga, Sargassum latifolium. Food Chem. Tox. 47: 1378-1384.
Hansen, M. B., S. E. Nielsen and K. Berg. 1989. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J. Immunol. Methods. 119: 203-210.
Huang, Y., D. Lin and CM. Taniguchi. 2017. Hypoxia inducible factor (HIF) in the tumor microenvironment: friend or foe? Sci. China Life Sci. 60: 1114-24.
Jimenez-Escrig, A. and F. Sanchez-Muniz. 2000. Dietary Fiber from edible seaweeds: chemical structure, physicochemical properties effects on cholesterol metabolism. Nutr. Res. 20: 585-598.
Jing, X., F. Yang, C. Shao, K. Wei, M. Xie, H. Shen and Y. Shu. 2019. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol. Cancer. 18:157.
Kim, J. B., A. M. Hudson, K. Huang, A. Bannistes, T. J. Jin, G. H. N. Choi, Y. K.Towers and R. E. Hong. 1997. Biological activity of seaweed extracts from British, Colombia, Canada and Korea. I. Antiviral activity. Can. J. Bot. Rev. 75: 1656 -1660.
Kuda, T., M. Tsunekawa, T. Hishi and Y. Araki. 2005. Antioxidant properties of dried kayamo-nori, a brown alga Scytosiphon lomentaria (Scytosiphonales, Phaeophyceae). Food Chem. 89: 617-622.
Kumar, V. and S. M. Jain. 2014. Plants and algae species: Promising renewable energy production source. Emir. J. Food Agric. 26 (8): 679-692.
Li, J., H. Huang, L. Sun, M. Yang, C. Pan, W. Chen, D. Wu, Z. Lin, C. Zeng, Y. Yao, P. Zhang and E. Song. 2009. MiR-21 indicates poor prognosis in tongue squamous cell carcinomas as an apoptosis inhibitor. Clin. Canc. Res. 15: 3998-4008.
Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 25: 402-408.
Mayer, A. M. S., A. D. Rodriguez, R. G. S. Berlinck and M. T. Hamann. 2007. Marine pharmacology in 2003-4: Marine compounds with anthelminthic, antibacterial, anticoagulant, antifungal, antiinflammatory, antimalarial, antiplatelet, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems, and other miscellaneous mechanisms of action. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 145: 553–581.
McKeown, S. R. 2014. Defining normoxia, physoxia and hypoxia in tumours—implications for treatment response. Br. J. Radiol. 87: 20130676.
Mylonis, I., G. Simos and E. Paraskeva. 2019. Hypoxia-Inducible Factors and the Regulation of Lipid Metabolism. Cells. 2019: 8.
Nagai, T. and T. Yukimoto. 2003. Preparation functional properties of beverages made from sea algae. Food Chem. 81: 327-332.
Nagaraju, G. P., P. V. Bramhachari, G. Raghu and B. F. El-Rayes. 2015. Hypoxia inducible factor-1: its role in colorectal carcinogenesis and metastasis. Cancer Lett. 366:11-18.
Puisségur, M. P., N. M. Mazure, T. Bertero, L. Pradelli, S. Grosso, K. Robbe-Sermesant, T. Maurin, K. Lebrigand, B. Cardinaud, V. Hofman, S. Fourre, V. Magnone, J. E. Ricci., J. Pouysségur, P. Gounon, P. Hofman, P. Barbry and B. Mari. 2011. miR-210 is overexpressed in late stages of lung cancer and mediates mitochondrial alterations associated with modulation of HIF-1 activity. Cell Death Diff. 18: 465-478.
Raafat, E. M., A. M. Gamal-Eldeen, E. A. El-Hussieny, E. F. Ahmed and A. A. Eissa. 2014. Polysaccharide extracts of the brown alga Sargassum asperifolium possess in vitro cancer chemopreventive properties. Nat. Prod. Res. 28: 2304–2311.
Roma-Rodrigues, C., R. Mendes, P. V. Baptista and A. R. Fernandes. 2019. Targeting tumor microenvironment for Cancer therapy. Int. J. Mol. Sci. 2019: 20.
Santoyo-Ramos, P., M. Likhatcheva, E. A. García-Zepeda, M. C. Castaneda-Patlán and M. Robles-Flores. 2014. Hypoxia-inducible factors modulate the stemness and malignancy of colon cancer cells by playing opposite roles in canonical Wnt signaling. PLoS One. 9: e112580.
Selcuklu, S. D., M. T. Donoghue and C. Spillane, 2009. miR-21 as a key regulator of oncogenic processes. Biochem. Soc. Trans. 37: 918-925.
Semenza, G. L. 2003. Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer 3: 721-732.
Shao, C., F. Yang, S. Miao, W. Liu, C. Wang, Y. Shu and H. Shen. 2018. Role of hypoxia induced exosomes in tumor biology. Mol. Cancer. 17: 120.
Suryaningrum L. H., and R. Samsudin. 2020. Nutrient digestibility of green seaweed Ulva meal and the influence on growth performance of Nile tilapia (Oreochromis niloticus). Emir. J. Food Agric. 32(7): 488-494
Vadde, R., S. Vemula, R. Jinka, N. Merchant, P. V. Bramhachari and G. P. Nagaraju. 2017. Role of hypoxia-inducible factors (HIF) in the maintenance of stemness and malignancy of colorectal cancer. Crit. Rev. Oncol. Hematol. 113: 22-27.
Van Uden, P., N. S. Kenneth, R. Webster, H. A. Muller, S. Mudie and S. Rocha. 2011. Evolutionary conserved regulation of HIF-1beta by NF-kappa b. PLoS Genet. 7: e1001285.
Varol, N., E. Konac, O. S. Gurocak and S. Sozen. 2011. The realm of microRNAs in cancers. Mol. Biol. Rep. 38: 1079-1089.
Vaupel, P. and A. Mayer. 2007. Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev. 26: 225-239.
Wen, X. Q., X. L. Qian, H. K. Sun, L. L. Zheng, W. Q. Zhu, T. Y. Li and J. P. Hu. 2020. MicroRNAs: Multifaceted Regulators of Colorectal Cancer Metastasis and Clinical Applications. OncoTargets therap. 13: 10851-10866.
Wilson, W. R. and M. P. Hay. 2011. Targeting hypoxia in cancer therapy. Nat. Rev. Cancer. 11: 393-410.
Yu, T., B. Tang and X. Sun. 2017. Development of Inhibitors Targeting Hypoxia-Inducible Factor 1 and 2 for Cancer Therapy. Yonsei Med. J. 58: 489-496.
Zagorska, A. and J. Dulak. 2004. HIF-1: the knowns and unknowns of hypoxia sensing. Acta Biochim. Pol. 51: 563-585.
Zhuang, C., H. Itoh, T. Mizuno and H. Ito. 1995. Antitumor active fucoidan from the brown seaweed, umitoranoo (Sargassum thunbergii). Biosci. Biotechnol. Biochem. 59: 563-567.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.