Characterization of five Chilean agribusiness by-products and their potential use as food supplements

Authors

  • Yaneris Mirabal- Gallardo Faculty of Engineering, Universidad Autónoma de Chile, Institute of Applied Chemistry, Talca, Chile
  • Maria del Pilar Caramantin Soriano Instituto de Química de Recursos Naturales, Universidad de Talca, Talca, Chile
  • Verónica Rachel Olate Center for Systems Biotechnology, Fraunhofer Chile Research, Avenida Del Cóndor #844, Piso 3, Huechuraba, Santiago, Chile
  • Luis Guzmán Jofré Departamento de Bioquímica Clínica e Inmunohematología, Escuela de Tecnología Médica, Universidad de Talca, Talca, Chile
  • Radha D. Pyarasani Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, 3605, Talca, 3460000 Chile
  • Amalraj John Laboratory of Materials Science, Instituto de Química de Recursos Naturales, Universidad de Talca, Talca, Chile
  • Felipe Laurie Facultad de Ciencias Agrarias, Universidad de Talca, Talca, Chile

DOI:

https://doi.org/10.9755/ejfa.2021.v33.i7.2730

Abstract

Chilean agribusiness generates large quantities of by-products and they have been little studied. According to the literature they represent important sources of sugar, protein, lipid, micronutrient, fiber, and others that have a broad field of action. In this work, by-products (white and red grape seeds, peach stones, avocado seeds, olive pomace, and corn cob) of Chilean agribusiness are characterized chemically with a view to their functional and nutritional potential. They are analyzed following standardized methodology which revealed that by-products are found to be a suitable source of protein (0.59-10.00 % on DW), fiber (33.85-71.93 % on DW), lipid (0.61-14.4 % on DW)), organic matter (77.34-99.87 % on DW), inulin (8.3-33 mg fructose/g dry sample), and a wide range of essential metals. They are rich in K, Ca, and Mg. Moreover, they have very good antioxidant capacity (FRAP, and DPPH), and total phenolics and flavonoids contents.  In conclusion, Chilean agribusiness by-products are attractive potential sources of food products, which could be used for nutritional purposes, and for the development of technologies.

Downloads

Download data is not yet available.

References

Abubakar, U. S., K. M. Yusuf, I. Safiyanu, S. Abdullahi, S. R. Saidu, G. T. Abdu and A. M. Indee. 2016. Proximate and mineral composition of corn cob, banana, and plantain peels. Int. J. Food Sci. Nutr. 1: 25-27.
AOAC International. 1998. Official Methods of Analysis of AOAC International. 16th edition. Gaithersburg, MD: USA, Association of Analytical Communities.
AOAC International. 2002. Official methods of analysis of AOAC International. 17th edition. Gaithersburg, MD, USA, Association of Analytical Communities.
Apostol, L., M. E. Popa and G. Mustatea. 2015. Compositional Study for Improving Wheat Flour with Functional ingredients. Bulletin UASVM Food Science and Technology. 72: 231-236.
Ashraf, C. M., S. Iqbal and D. Ahmed. 2011. Nutritional and physicochemical studies on fruit pulp, seed and shell of indigenous Prunus persica. J. Med. Plant Res. 5: 3917-3921.
Benzie, I. F. and J. J. Strain. 1996. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal. Biochem. 239: 70-76.
Burnier, M. 2019. Should we eat more potassium to better control blood pressure in hypertension?. Nephrol. Dial. Transplant. 34: 184-193.
Cerda-Carrasco, A., R. López-Solís, H. Nuñez-Kalasic, A. Peña-Neira and E. Obreque-Slier. 2015. Phenolic composition and antioxidant capacity of pomaces from four grape varieties (Vitis vinifera L.). J. Sci. Food Agric. 95: 1521–1527.
Chamli, D., M. A. Bootello, I. Bouali, S. Jouhri, S. Boukhchina and E. Martínez-Force. 2017. Chemical characterization and thermal properties of kernel oils from Tunisian peach and nectarine varieties of Prunus persica. Grasas y Aceites. 68: e211.
Chen, H., W. Jiang, Y. Yang, Y. Yang and X. Man. 2017. State of the art on food waste research: A bibliometrics study from 1997 to 2014. J. Clean. Prod. 140: 840–846.
Daiuto, E. R., M. A. Tremocoldi, S. M. De Alencar, V. R. Lopes and P. H. Minarelli. 2014. Composição Química e Atividade Antioxidante da Polpa e Resíduos de Abacate Hass. Rev. Bras. Frutic. 36: 417-424.
Eguillor, P. M. R. 2019. Pérdida y desperdicio de alimentos en el sector agrícola: avances y desafíos. Oficina de Estudios y Políticas Agrarias. Febrero: 1-19. (In Spanish)
Fernandez-Hernandez, A., R. Mateos, J. A. Garcia-Mesa, G. Beltran and R. Fernandez-Escobar. 2010. Determination of mineral elements in fresh olive fruits by flame atomic spectrometry. S. J. A. R. 8: 1183-90.
Fernández-Pachón, M. S., D. Villaño, M. C. García-Parrilla and A. M. Troncoso. 2004. Antioxidant activity of wines and relation with their polyphenolic composition. Anal. Chim. Acta. 513: 113–118.
Flores, M., J. Ortiz-Viedma, A. Curaqueo, A. Rodriguez, G. Dovale-Rosabal, F. Magaña, C. Vega, M. Toro, L. López, R. Ferreyra and B. G. Defilippi. 2019. Preliminary Studies of Chemical and Physical Properties of Two Varieties of Avocado Seeds Grown in Chile. J. Food Qual. 2019: 1-11.
Harrigan, G. G., K. C. Glenn and W. P. Ridley. 2010. Assessing the natural variability in crop composition. Regul. Toxicol. Pharmacol. 58: S13–S20.
Hernández, D., H. Fernández-Puratich, F. Cataldo and González, J. 2020. Particle boards made with Prunus avium fruit waste. Case Stud. Constr. Mater. 12: e00336.
Liu, F., M. Prabhakar, J. Ju, H. Long and H. W. Zhou. 2017. Effect of inulin-type fructans on blood lipid profile and glucose level: A systematic review and meta-analysis of randomized controlled trials. Eur. J. Clin. Nutr. 71: 9–20.
Pasten, A., E. Uribe, K. Stucken, A. Rodríguez and A. Vega‑Gálvez. 2017. Influence of Drying on the Recoverable High-Value Products from Olive (cv. Arbequina) Waste Cake. Waste Biomass Valor. 10: 1627–1638.
Saavedra, J., A. Córdova, R. Navarro, P. Díaz-Calderón, C. Fuentealba, C. Astudillo-Castro, L. Toledo, J. Enrione and L. Galvez. 2017. Industrial avocado waste: Functional compounds preservation by convective drying process. J. Food Eng. 198:81-90.
Sagar, N. A., S. Pareek, S. Sharma, E. M. Yahia and M. G. Lobo. 2018. Fruit and Vegetable Waste: Bioactive Compounds. Compr. Rev. Food Sci. F. 17: 512-531.
Saqib, N. U., H. B. Sharma, S. Baroutian, B. Dubey and A. K. Sarmah. 2019. Valorization of food waste via hydrothermal carbonisation and techno-economic feasibility assessment. Science of the Total Environment. 690: 261–276.
Singleton, V. L. and J. A. Rossi. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16: 144-158.
Soriano, M. D. P. C., F. Schiappacasse, P. Penailillo, J. Tapia, S. Wehinger, A. A. Valenzuela-Vásquez and S. M. Durán-Peña. 2021. Nutritional and Functional Potential of Selliera radicans Cav., a Chilean Native Halophyte. Pharmacogn. J. 13: 341-346.
Tlais, A. Z. A., G. M. Fiorino, A. Polo, P. Filannino and R. Di Cagno. 2020. High-Value Compounds in Fruit, Vegetable and Cereal Byproducts: An Overview of Potential Sustainable Reuse and Exploitation. Molecules. 25: 2987.
Torres-León, C., N, Ramírez-Guzman, L. Londoño-Hernandez, G. A. Martinez-Medina, R. Díaz-Herrera, V. Navarro-Macias, O. B. Alvarez-Pérez, B. Picazo, M. Villarreal-Vázquez, J. Ascacio-Valdes and C. N. Aguilar. 2018. Food Waste and Byproducts: An Opportunity to Minimize Malnutrition and Hunger in Developing Countries. Front. Sustain. Food Syst. 2: 52.
Uribe E., R. Lemus-Mondaca, A. Pasten, S. Astudillo, A. Vega-Gálvez, L. Puente-Díaz and K. Di Scala. 2014. Dehydrated olive-waste cake as a source of high value-added bioproduct: Drying kinetics, physicochemical properties, and bioactive compounds. Chil. J. Agric. Res. 74: 293-301.
Vásquez-Villanueva, R., M. L. Marina and G. M. Concepción. 2015. Revalorization of a peach (Prunus persica (L.) Batsch) byproduct: Extraction and characterization of ACE-inhibitory peptides from peach stones. J. Funct. Foods. 18: 137-146.
Watson M. E. and T. L. Galliher. 2006. Comparison of Dumas and Kjeldahl methods with automatic analyzers on agricultural samples under routine rapid analysis conditions. Commun. Soil Sci. Plant Anal. 32: 2007-2019.
Yalcin, H., H. Kavuncuoglu, L. Ekici and O. Sagdi. 2016. Determination of fatty acid composition, volatile components, physico-chemical and bioactive properties of grape (vitis vinifera) seed and seed oil. J. Food Process. Preserv. 41: e12854.
Zagmutt, S., L. Guzmán, R. Orrego, S. Wehinger and E. Leiva. 2016. Phenolic Compound Identification and Antioxidant Capacity of Alperujo Extracts from Region del Maule, Chile. Int. J. Food Prop. 19: 2016–2025.
Zhishen, J., T. Mengcheng and W. Jianming. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 64: 555-559.

Published

2021-08-18

How to Cite

Gallardo, Y. M.-., M. del P. C. Soriano, V. R. Olate, L. G. Jofré, R. D. Pyarasani, A. John, and F. Laurie. “Characterization of Five Chilean Agribusiness by-Products and Their Potential Use As Food Supplements”. Emirates Journal of Food and Agriculture, vol. 33, no. 7, Aug. 2021, pp. 607-12, doi:10.9755/ejfa.2021.v33.i7.2730.

Issue

Section

Research Article