Genetic diversity analysis of Linseed (Linum usitatissimum L.) accessions using RAPD Markers

  • Beema Nagabhushanam Molecular Genetics and Biotechnology Laboratory, Department of Botany, Osmania University, Hyderabad, Telangana, India
  • Mohammad Imran Mir Molecular Genetics and Biotechnology Laboratory, Department of Botany, Osmania University, Hyderabad, Telangana, India
  • M. Nagaraju Molecular Genetics and Biotechnology Laboratory, Department of Botany, Osmania University, Hyderabad, Telangana, India
  • E. Sujatha Molecular Genetics and Biotechnology Laboratory, Department of Botany, Osmania University, Hyderabad, Telangana, India
  • B. Rama Devi Molecular Genetics and Biotechnology Laboratory, Department of Botany, Osmania University, Hyderabad, Telangana, India
  • B. Kiran Kumar Molecular Genetics and Biotechnology Laboratory, Department of Botany, Osmania University, Hyderabad, Telangana, India


It is important to analyse the degree of genetic variation existing within the genome to extend   the genetic base of linseed/flaxseed accessions in order to preserve, evaluate and use genetic resources accurately and successfully. The main aim of the current investigation was to evaluate the scope and spread of genomic variation across different linseed accessions by employing molecular markers (RAPD). The genomic DNA of 12 linseed accessions was amplified with 16 decamer RAPD primers that generated 81 total bands, among which 75 bands were polymorphic and 6 bands were monomorphic. Polymorphic band numbers varied from least 2 (OPS-11) to highest 10 (OPS-07). The magnitude of polymorphism ranged from 75% to 100% among all accessions with a mean of 93.15 % across all the accessions. The value of Polymorphic Information Content (PIC) varied from 0.133% to 0.708% with a mean of 0.45% for each primer. The maximum PIC value (0.708) was found with the primer OPS-07 and (0.702) with OPM-13. The primer OPS-03 showed the minimum PIC value (0.133). Two main different clusters -I and -II were seen in the cluster analysis depending on RAPD data. Cluster-II comprises one accession (IC 564585) that was the highly varied accession, whereas Cluster-I comprises of some sub clusters with all the remaining accessions. The Jaccard's similarity coefficient varied from 8.2 to 96.3%. The accessions BHU-A and BHU-B had the highest genetic similarity (96.3%), followed by BHU-B and IC 564605 (96.2%). More divergent accessions were discovered to be IC 564585, IC 564616, IC 564631, IC 564622, and IC 564630. The current investigation provides innovative knowledge to breeders on the germplasm of linseed that would be employed in subsequent research to improve linseed genotypes.


Abou El-Nasar, T.H.S., M. S. Hassanein, M. E. S. Ottai and M.A. Al-Kordy. 2014. Genetic Diversity Among Five Romanian Linseed Varieties Under Egyptian Conditions. Middle East Journal of Applied Sciences. 4: 114-121.
Abou El- Nasr, T.H.S., and H. A. Mahfouze. 2013. Genetic variability of Golden Flax (Linum usitatissimum L.) using RAPD markers. World Applied Science Journal. 23: 851-856
Baack, E. J., K. D. Whitney and L. H. Rieseberg. 2005. Hybridization and genome size evolution: timing and magnitude of nuclear DNA content increases in Helianthus homoploid hybrid species. New phytol. 167: 623-23. DOI: 10.1111/j.1469-8137.2005.01433.x.
Barbar, T., C. Palma-Silva, G. M. Paggi, F. Bered, M.F. Fay and C. Lexer. 2007. Cross-species transfer of nuclear microsatellite markers: potential and limitations. Molecular Ecology. 16: 3759-67. doi: 10.1111/j.1365-294X.2007.03439.x.
Begum, H., A. K. M. M. Alam, M. J. A. Chowdhary and M. I. Hossain. 2007. Genetic divergence in linseed (Linum usitatissimum L.). Int. J. Sustain. Crop. Prod. 2: 04-06
Bhavita, G., J. Vaishanavi and S. D. Mahendra. 2021. Assesment of genetic diversitu and physic-chemical analysis of linseed (Linum usitatissimum L.) genotypes. The pharma innovation. 10: 328-331
Bjelkova, M., J. Nozova, K. Fatrcova-Sramkova and E. Tejklova. 2012. Comparision of linseed (Linum usitatissimum L) genotype with respect to the content of polyunsaturated fatty acids. Chem. Pap. 66: 972-976.
Chandrawati., R. Maurya, P. K. Singh, S. A. Ranade and H. K. Yadav. 2014. Diversity analysis in Indian genotypes of linseed (Linum usitatissium L.) using AFLP markers. Gene. 549: 171-178.
Diederichsen, A. and J. P. Raney. 2006. Seed colour, seed weight and seed oil content in Linumusitaitissimum accessions held by Plant Gene Resources of Canada. Plant Breeding. 125(4), 372-373.
Doyle, J. J. and J. E. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue Phytochemical Bulletin. Vol. 9(1): 11-15. Vol. 9(1): 11-15 Vol. 9(1): 11-15.

EI-Beltagi, H. Z. A., D. M. Salama and El- HARIRI. 2007. Evaluation of fatty acids profile and the content of some secondary metabolites in seeds of different flax cultivars (Linum usitatissimum L). Gen. Appl. Plant Physiology. 33(3-4), 187-202.
Fu, Y. B. 2005. Geographic patterns of RAPD variation in cultivated flax. Crop Sci. 45(3): 1084-1091.

Fu, Y. B., G. G. Rowland, S. D. Duguid and K. W. Richards. 2003. RAPD Analysis of 54 North American flax cultivars. Crop.sci. 43(4): 1084-1091.

Hosseinian, F. S., G. G. Rowland, P. R. Bhirud, J. H. Dyck and R. T. Tyler. 2004. Chemical composition and physicochemical and hydrogenation characteristics of high-palmitic acid solin (low-linolenic acid flaxseed) oil. J Amer Oil Chem Soc. 81: 185–188.
Jaccard, P. 1908. Nouvelles researches la distribution florae. Bulletin del la societe vaudoise des sciences Naturelles. 44: 223-270.
Kuamr, A., S. Paul and V. Sharma. 2018. Genetic diversity analysis using RAPD and ISSR Markers revealed discrete genetic makeup in relatonto fibre and oil content in (Linum usitatissimum L.) genotypes. Nucleus. 61: 45-53.
Mansby, E., O.Diaz and R. V. Bothmer. 2000. Preliminary study of genetic diversity in Swedish flax (Linumusitatissimum L). Resources and Crop Evolution. 47: 417-424.
Paniego, N., M. Echaide, M. Munoz, L. Fernandez, S. Torales, P. Faccio, I. Fuxan, M. Carrera, R. Zandomeni, E. Y. Suarez and H. E. Hopp. 2002. Microsatellite isolation and characterization in sunflower (HelianthusannuusL.) Genome. 45: 34-43.
Patak, J. 2001. Comparison of RAPD, STS, ISSR and AFLP molecular methods used for assessment of genetic diversity in hop (Humuluslupulus L.). Euphytica. 121: 9-18. doi: 10.1023/A:1012099123877
Prabhakar, K. S., M. Akram and R. L. Srinivas. 2009. Genetic Diversity in linseed (Linum usitatissimum L) cultivars based on RAPD analysis. Indian journal of Agricultural Sciences. 79: 1046-1049.
Ragupathy, R., R. Rathinavelu and S. Cloutier. 2011. Physical mapping and BAC-end sequence analysis provide initial insights into the flax (Linum usitatissimum L.) genome. BMC Genomics. 12 217.
Rohlf, F. J. 2000. NTSY-pc. Numarical Taxonomy and multivariate Analysis system. Version.2.02. Exeter Software, Setauket, New York.
Roldan-Ruiz, I., J.J. Dendauw, V. Bockstaele, A. Depicker. M. Loose. 2010. AFLP Markers reval high poly morphic rates in ryegrasses ( Lolium spp.). Mol Breed. 6: 125-134.
Saeidi, G. 2012. Genetic variation and heritability for germination, seed vigour and field emergence in brown and yellow- seeded genotypes of flax. International journal of plant production. 2: 15-22.
Schmidt, T. J., M. Klaes and J. Sendker. 2012. Lignans in seeds of Linum species. Phytochemistry. 82: 89-99. doi: 10.1016/j.phytochem.2012.07.004.
Soto-cerda, B. J., H. U. Savedra, C. N. Navarro and P. M. Ortega. 2011 Characterization of novel genic SSR markers in Linum usitatissimum (L.). and their transferability across eleven Linum species. Electronic journal of Biotechnology. 14: 6. Doi:10.2225/vol 14-issue 2 – full text-6.
Srivastav, V. S., C. V. Kapdia, M. K. Mahatma, S. K. Jha and T. Ahmed. 2013. Genetic diversity analysis of date palm (Phoenix dactylifera L.) in the kutch region of India using RAPD and ISSR markers. Emir. J. Food Agric. 25: 907-915.
Tadesse, T., H. Singh and B. Weyessg. 2009. Genetic divergence in linseed Germplasm. J.innov. Dev. Strategy. 3:13-20.
Ulloa, O., F. Ortega and H. Campos. 2003. Analysis of genetic diversity in red clover (Trifolium pararnse L.) breeding populations as revealed by RAPD genetic markers. Genome. 46:529-535.
Umesh, R. P., J. Baskaran, I. P. Ajithkumar, and R. pannerselvam. 2013. Genetic variation between Xylocarpus spp. (Meliaceae) as revealed by Random Amplified Polymorphic DNA (RAPD) Markers. Emir. J. Food Agric. 25: 597-604.
Wesrcott, N. A. and A. D. Muir. 2003. Flax seed lignin in disease prevention and health promotion. Phytochem. Reviews. 2:401-417. Doi: 10.1023/B:PHYT.0000046174.97809.b6.
Williams, J. G. K., A. R. Kubelik, K. J. Livak, J. A. Rafalski and S. V. Tingey. 1990. Amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18:6531-6535.
Yadava, D. K., S. Vasudev, N. Singh, T. Mohapatra and K.V. Prabhu. 2012. Breeding major oil crop: Present status and future research needs. Technological innovations major world oil crops breed. Volum 1, (17-51). DOI 10.1007/978-1-4614-0356-2_2.
Ziarovska, J., K. Razna, S. Senkova, V. Stefunova and M. Bezo. 2012. Variability of Linum usitatissimum L. based on molecular markers. ARPN J. of Agric. And Bio. Sci.7:50-58.
Zohary, D. 1999. Monophyletic and polyphyletic orgin of the crops on which agriculture was formed in the near east. Genet. Resear. Crop Evol.46: 133-142.
368 Views | 150 Downloads
How to Cite
Nagabhushanam, B., M. I. Mir, M. Nagaraju, E. Sujatha, B. R. Devi, and B. K. Kumar. “Genetic Diversity Analysis of Linseed (Linum Usitatissimum L.) Accessions Using RAPD Markers”. Emirates Journal of Food and Agriculture, Vol. 33, no. 7, Sept. 2021, pp. 589-9, doi: Accessed 27 June 2022.
Research Article