Elaeagnus umbellata fruit - chemical composition, bioactive compounds, and kinetic of DPPH inhibition compared to standard antioxidants

  • Klara Zglińska Division of Animal Nutrition, Institute of Animal Sciences, Warsaw University of Life Sciences; Ciszewskiego 8, 02-786 Warsaw, Poland
  • Anna Rygalo Galewska Division of Animal Nutrition, Institute of Animal Sciences, Warsaw University of Life Sciences; Ciszewskiego 8, 02-786 Warsaw, Poland
  • Joanna Bryś Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 161, 02-787 Warsaw, Poland
  • Piotr Koczoń Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 161, 02-787 Warsaw, Poland
  • Kinga Borek Department of Rural Technical Infrastructure Systems, Institute of Technology and Life Sciences,Warsaw Branch, Rakowiecka 32, 02-532 Warsaw, Poland
  • Mateusz Roguski Division of Animal Nutrition, Institute of Animal Sciences, Warsaw University of Life Sciences; Ciszewskiego 8, 02-786 Warsaw, Poland
  • Tomasz Niemiec Division of Animal Nutrition, Institute of Animal Sciences, Warsaw University of Life Sciences; Ciszewskiego 8, 02-786 Warsaw, Poland


  1. umbellata (Autumn Olive) is a medicinal plant used in traditional Asian medicine. In this study, we examine E. umbellata, which grows in central Europe (Poland). Despite significant climatic differences in both regions, we show that the fruits have a similar chemical composition and antioxidant activity to those observed in their native areas. For the first time, we examined the fatty acid composition of E. umbellata, showing that unsaturated fatty content for as much as 88.67% of total fat. Including the content of essential polyunsaturated fatty acids was over 50% of the total fat. We also examined proximate content, the content of fat-soluble vitamins, lycopene, beta carotene, and the mineral composition of the fruit. Moreover, using FT-IR spectrometry, we have shown that the fruits of the Autumn olive can change the distribution of chemical bonds when treated with hydrogen peroxide. The fruits of E. umbellata showed dose-dependent antioxidant properties with IC50 values of 76.27 µg / ml We also investigated the kinetic antioxidant activity of E. umbellata fruits based on DPPH radical inhibition compared to standard antioxidants (vitamin c and BHT). We have shown that using available protocols to spectrophotometrically study antioxidants' reaction with the DPPH radical may underestimate the effects of the Autumn Olive fruits.


Ahmand, S.D., Sabir, S.M. and Zubair, M. 2006. Ecotypes diversity in autumn olive (Elaeagnus umbellata Thunb): A single plant with multiple micronutrient genes. Chem Ecol.22.6:501-521.
Bondet, V., Brand-Williams, W. and Berset, C. 1997. Kinetics and Mechanisms of Antioxidant Activity using the DPPH.Free Radical Method.LWT - Food Sci. Technol.30.6:609–615.
Bryś, J., Flores, lnês F. V., Górska, A., Wirkowska-Wojdyła, M., Ostrowska-Ligęza, E. and Bryś, A. (2017. Use of GC and PDSC methods to characterize human milk fat substitutes obtained from lard and milk thistle oil mixtures.J. Therm. Anal. Calorim.130:1.319–327.
Calder, P. C. 2017. Omega-3 fatty acids and inflammatory processes: From molecules to man.Biochem. Soc. Trans. Portland Press Ltd1105–1115.
CEU Repositorio Institucional: Official methods of analysis of AOAC International. Volume I, agricultural chemicals, contaminants, drugs / edited by William Horwitz. (no date).
Ciemniewska-Żytkiewicz, H., Pasini, F., Verardo, V., Bryś, J., Koczoń, P. and Caboni, M. F. 2015. Changes of the lipid fraction during fruit development in hazelnuts Corylus avellana L.) grown in Poland.Eur. J. Lipid Sci. Technol.117:5.710–717.
Coates, J. (2006. Interpretation of Infrared Spectra, A Practical Approachin .Encycl. Anal. Chem. Chichester, UK: John Wiley & Sons, Ltd.
Fordham, I. M., Clevidence, B. A., Wiley, E. R. and Zimmerman, R. H. 2001. Fruit of autumn olive: A rich source of lycopene.HortScience.36:6.1136–1137.
Goncharova, N. P. and Glushenkova, A. I. 1990. Lipids of elaeagnus fruit.Chem. Nat. Compd.26:1.12–15.
Hangun-Balkir, Y. and McKenney, M. L. 2012. Determination of antioxidant activities of berries and resveratrol.Green Chem. Lett. Rev.5:2.147–153.
Innes, J. K. and Calder, P. C. 2018. Omega-6 fatty acids and inflammation.Prostaglandins Leukot. Essent. Fat. Acids. Churchill Livingstone41–48.
Ishaq, S., Habib, A. and Rathore, S. M. 2015. Antioxidant Properties of Elaeagnus umbellata Berry Solvent Extracts against Lipid Peroxidation in Mice Brain and Liver Tissues.Food Sci. Biotechnol.24:2.1–7.
Jabeen, A., Sharma, A., Gupta, I., Kheraldine, H., Vranic, S., Al Moustafa, A. E. and Al Farsi, H. F. 2020. Elaeagnus angustifolia plant extract inhibits epithelial-mesenchymal transition and induces apoptosis via HER2 inactivation and JNK pathway in HER2-positive breast cancer cells.Molecules.25:18.
Kadir, M. and Kuerbanjiang, B. 2011. Research on fat and protein compositions in seeds of wild Elaeagnus angustifolia from Xinjiang Uigur Autonomous Region.undefined.
Khattak, F. K. 2012. Free radical scavenging activity, phytochemical composition and nutrient analysis of Elaeagnus umbellata berry.J. Med. Plants Res.6:39.5196–5203.
Kusova, R. D. and Luk’yanchikov, M. S. 1990. Fatty acid composition of the fruit oil of Elaeagnus angustifolia.Chem. Nat. Compd.25:6.718.
Liu, D., Shi, J., Ibarra, A. C., Kakuda, Y. and Xue, S. J. 2008. The scavenging capacity and synergistic effects of lycopene, vitamin E, vitamin C, and β-carotene mixtures on the DPPH free radical.LWT - Food Sci. Technol.7:41.1344–1349.
Łozicki, A., Niemiec, T., Pietrasik, R., Pawęta, S., Rygało-Galewska, A. and Zglińska, K. 2020. The Effect of Ag Nanoparticles and Multimicrobial Preparation as Factors Stabilizing the Microbiological Homeostasis of Feed Tables for Cornu aspersum Müller. Snails on Snail Growth and Quality Parameters of Carcasses and Shells.Animals.10:12.2260.
Mathew, M. and Subramanian, S. 2014. In vitro screening for anti-cholinesterase and antioxidant activity of methanolic extracts of ayurvedic medicinal plants used for cognitive disorders.PLoS One.9:1.
Müller, L., Caris-Veyrat, C., Lowe, G. and Böhm, V. 2016. Lycopene and Its Antioxidant Role in the Prevention of Cardiovascular Diseases—A Critical Review.Crit. Rev. Food Sci. Nutr.56:11.1868–1879.
Nabavi, S. M., Ebrahimzadeh, M. A., Nabavi, S. F. and Bahramian, F. 2009. In vitro antioxidant activity of Phytolacca americana berries.Pharmacologyonline.1.81–88.
Nazir, N., Zahoor, M., Nisar, M., Khan, I., Karim, N., Abdel-Halim, H. and Ali, A. 2018. Phytochemical analysis and antidiabetic potential of Elaeagnus umbellata (Thunb.) in streptozotocin-induced diabetic rats: Pharmacological and computational approach.BMC Complement. Altern. Med.18:1.
Nazir, N., Zahoor, M., Ullah, R., Ezzeldin, E. and Mostafa, G. A. E. 2020. Curative Effect of Catechin Isolated from Elaeagnus Umbellata Thunb. Berries for Diabetes and Related Complications in Streptozotocin-Induced Diabetic Rats Model.Molecules.26:1.137.
Nazir, N., Zahoor, M., Uddin, F. and Nisar, M. 2021. Chemical composition, in vitro antioxidant, anticholinesterase, and antidiabetic potential of essential oil of Elaeagnus umbellata Thunb.BMC Complement. Med. Ther. 2021 211.21:1.1–13.
Neha, K., Haider, M. R., Pathak, A. and Yar, M. S. 2019. Medicinal prospects of antioxidants: A review.Eur. J. Med. Chem. Elsevier Masson SAS687–704.
Niknam, F., Azadi, A., Barzegar, A., Faridi, P., Tanideh, N. and M. Zarshenas, M. 2016. Phytochemistry and Phytotherapeutic Aspects of Elaeagnus angustifolia L.Curr. Drug Discov. Technol.13:4.199–210.
Pastori, M., Pfander, H., Boscoboinik, D. and Azzi, A. 1998. Lycopene in association with α-tocopherol inhibits at physiological concentrations proliferation of prostate carcinoma cells.Biochem. Biophys. Res. Commun.250:3.582–585.
Paunović, S. M. and Mašković, P. 2020. Phenolic Compounds, Antioxidant and Cytotoxic Activity in Berry and Leaf Extracts of Black Currant (Ribes nigrum L.) as affected by Soil Management Systems.Erwerbs-Obstbau.62:3.293–300.
Pei, R., Yu, M., Bruno, R. and Bolling, B. W. 2015. Phenolic and tocopherol content of autumn olive (Elaeagnus umbellate) berries.J. Funct. Foods.16.305–314.
Qayyum, R., Qamar, H. M. U. D., Salma, U., Khan, S., Khan, T. and Shah, A. J. 2019. Insight into the cardiovascular activities of elaeagnus umbellata.Farmacia.67:1.133–139.
Shahidi, F. 2000. Antioxidants in food and food antioxidants.Nahrung/Food.44:3.158–163.
Simopoulos, A. P. 2002. The importance of the ratio of omega-6/omega-3 essential fatty acids.Biomed. Pharmacother.56:8.365–379.
Uddin, G., Feroz, S., Ali, J. and Rauf, A. 2014. Antioxidant , antimicrobial activity and phytochemical investigation of Pterospermum acerifolium ( Leaf petiole ).J. Agricul. Res.3:3.058–062.
Zglińska, K., Niemiec, T., Bryś, J., Bryś, A., Łozicki, A., Kosieradzka, I. and Koczoń, P. 2020. The combined use of GC, PDSC and FT-IR techniques to characterize fat extracted from commercial complete dry pet food for adult cats.Open Chem.18:1.1136–1147.
Zglińska, K., Niemiec, T., Łozicki, A., Matusiewicz, M., Szczepaniak, J., Puppel, K., Kutwin, M., Jaworski, S., Rygało-Galewska, A. and Koczoń, P. 2021. Effect of Elaeagnus umbellata (Thunb.) fruit extract on H2O2-induced oxidative and inflammatory responses in normal fibroblast cells.PeerJ.9.e10760.
Zhang, Q., Zhang, J., Shen, K., Dennis, D. and C. Barrow. 2006. A Simple 96-Well Microplate Method for Estimation of Total Polyphenol Content in Seaweeds. Journal of Applied Phycology.18:445–450.