Protecting the viability of encapsulated Lactobacillus rhamnosus LGG using chocolate as a carrier

  • Md Nur Hossain School of Agriculture & Food, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Melbourne VIC 3010, Australia; Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research, Dhaka 1205, Bangladesh
  • Chaminda Senaka Ranadheera School of Agriculture & Food, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Melbourne VIC 3010, Australia
  • Zhongxiang Fang School of Agriculture & Food, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Melbourne VIC 3010, Australia
  • Graham Hutchinson Melbourne TrACEES Platform (Trace Analysis for Chemical, Earth and Environmental Sciences), Department of Chemistry, The University of Melbourne, Melbourne VIC 3010, Australia
  • Said Ajlouni School of Agriculture & Food, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Melbourne VIC 3010, Australia


The novel probiotic encapsulation approaches in snacks have not been thoroughly investigated. This study examined the viability of encapsulated Lactobacillus rhamnosus LGG using chocolate as a carrier. Various encapsulants, including cocoa powder, Na-alginate, fructooligosaccharides, whey protein concentrate, hi-maize starch and skim milk powder were tested using a freeze-drying technique. The encapsulation efficiency of L. rhamnosus reached 91.82% using cocoa powder and Na-alginate formulations. The encapsulated probiotic survived at thermal exposure maintaining more than 9 logs at 60°C. Chocolate was proven as a good carrier for encapsulated probiotic maintained viability above the therapeutic level (107 log) up to 180 and 120 days stored at 4°C and 25°C, respectively. Additionally, encapsulated L. rhamnosus in chocolate showed higher survival number (8.47 log cfu/g) at the end of gastrointestinal digestion. Hence, cocoa powder with Na-alginate as an encapsulation agent has potential applications in the development of healthy probiotic chocolate.


Afzaal, M., F. Saeed, M. U. Arshad, M. T. Nadeem, M. Saeed and T. Tufail. 2019. The Effect of Encapsulation on The Stability of Probiotic Bacteria in Ice Cream and Simulated Gastrointestinal Conditions. Probiotics. Antimicro. 11: 1348-1354.
Braber, N. V., L. D. Vergara, Y. Rossi, C. Aminahuel, A. Mauri, L. Cavaglieri and M. Montenegro. 2020. Effect of microencapsulation in whey protein and water-soluble chitosan derivative on the viability of the probiotic Kluyveromyces marxianus VM004 during storage and in simulated gastrointestinal conditions, LWT. 118: 108844.
Brinques, G. B. and M. A. Z. Ayub. 2011. Effect of microencapsulation on survival of Lactobacillus plantarum in simulated gastrointestinal conditions, refrigeration, and yogurt. J. Food Eng. 103: 123-128.
Champagne, C. P., A. G. da Cruz and M. Daga. 2018. Strategies to improve the functionality of probiotics in supplements and foods, Curr. Opin. Food Sci. 22: 160-166.
Champagne, C. P., Y. Raymond, N. Guertin and G. Belanger. 2015. Effects of storage conditions, microencapsulation and inclusion in chocolate particles on the stability of probiotic bacteria in ice cream. Int. Dairy J. 47: 109-117
Cooper, K. A., E. Campos-Giménez, D. Jiménez Alvarez, K. Nagy, J. L. Donovan and G. Williamson. 2007. Rapid reversed phase ultra-performance liquid chromatography analysis of the major cocoa polyphenols and inter-relationships of their concentrations in chocolate. J. Agric. Food Chem. 55: 2841-2847.
de Araújo Etchepare, M., G. L. Nunes, B. R. Nicoloso, J. S. Barin, E. M. Moraes Flores, R. de Oliveira Mello and C. Ragagnin de Menezes. 2020. Improvement of the viability of encapsulated probiotics using whey proteins. LWT. 117: 108601.
de Araújo Etchepare, M., G. C. Raddatz, É. M. de Moraes Flores, L. Q. Zepka, E. Jacob-Lopes, J. S. Barin, C. R. F. Grosso and C. R. de Menezes. 2016. Effect of resistant starch and chitosan on survival of Lactobacillus acidophilus microencapsulated with sodium alginate. LWT. 65: 511-517.
Dong, Q. Y., M. Y. Chen, Y. Xin, X. Y. Qin, Z. Cheng, L. E. Shi and Z. X. Tang. 2013. Alginate‐based and protein‐based materials for probiotics encapsulation: a review. Int. J. Food Sci. Technol. 48: 1339-1351.
FAO/WHO. (2002). Guidelines for the Evaluation of Probiotics in Food. Report of a Joint FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food. London, Ontario, Canada.
Gerez, C. L., G. Font de Valdez, M. L. Gigante and C. Grosso. 2012. Whey protein coating bead improves the survival of the probiotic Lactobacillus rhamnosus CRL 1505 to low pH. Lett. Appl. Microbiol. 54: 552-556.
Hill, C., F. Guarner, G. Reid, G. R. Gibson, D. J. Merenstein, B. Pot, L. Morelli, R. B. Canani, H. J. Flint, S. Salminen, P. C. Calder and M. E. Sanders. 2014. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroentero. 11: 506-514.
Hossain, M. N., C. S. Ranadheera, Z. Fang and S. Ajlouni. 2020. Healthy chocolate enriched with probiotics: a review. Food Sci. Tech. Brazil. 40: 1-13.
Hossain, M. N., C. S. Ranadheera, Z. Fang and S. Ajlouni. 2021. Impact of encapsulating probiotics with cocoa powder on the viability of probiotics during chocolate processing, storage, and in vitro gastrointestinal digestion. J. Food Sci. 86: 1629-1641..
Jiang, Y., Z. Zheng, T. Zhang, G. Hendricks and M. Guo. 2016. Microencapsulation of Lactobacillus acidophilus NCFM using polymerized whey proteins as wall material. Int. J. Food Sci. Nutr. 67: 670-677.
Kemsawasd, V., P. Chaikham and P. Rattanasena. 2016. Survival of immobilized probiotics in chocolate during storage and with an in vitro gastrointestinal model. Food Bioscience. 16: 37-43.
Khorasani, A. C. and S. A. Shojaosadati. 2016. Bacterial nanocellulose-pectin bionanocomposites as prebiotics against drying and gastrointestinal condition. Int. J. Biol. Macromol. 83: 9-18.
Khorasani, A. C. and S. A. Shojaosadati. 2017. Starch-and carboxymethylcellulose-coated bacterial nanocellulose-pectin bionanocomposite as novel protective prebiotic matrices. Food Hydrocolloid. 63: 273-285.
Klindt-Toldam, S., S. K. Larsen, L. Saaby, L. R. Olsen, G. Svenstrup, A. Müllertz, S. Knøchel, H. Heimdal, D. S. Nielsen and D. Zielińska. 2016. Survival of Lactobacillus acidophilus NCFM ® and Bifidobacterium lactis HN019 encapsulated in chocolate during in vitro simulated passage of the upper gastrointestinal tract. LWT. 74: 404-410.
Krasaekoopt, W. and S. Watcharapoka. 2014. Effect of addition of inulin and galactooligosaccharide on the survival of microencapsulated probiotics in alginate beads coated with chitosan in simulated digestive system, yogurt and fruit juice. LWT. 57: 761-766.
Krunic, T. Z., N. S. Obradovic and M. B. Rakin. 2019. Application of whey protein and whey protein hydrolysate as protein based carrier for probiotic starter culture. Food Chem. 293: 74-82.
Lalicic-Petronijevic, J., J. Popov-Raljic, D. Obradovic, Z. Radulovic, D. Paunovic, M. Petrusic and L. Pezo. 2015. Viability of probiotic strains Lactobacillus acidophilus NCFM (R) and Bifidobacterium lactis HN019 and their impact on sensory and theological properties of milk and dark chocolates during storage for 180 days. J. Funct. Foods. 15: 541-550.
Mani-López, E., E. Palou and A. López-Malo. 2014. Probiotic viability and storage stability of yogurts and fermented milks prepared with several mixtures of lactic acid bacteria. J. Dairy Sci. 97: 2578-2590.
Martín, M. J., F. Lara-Villoslada, M. A. Ruiz and M. E. Morales. 2015. Microencapsulation of bacteria: A review of different technologies and their impact on the probiotic effects. Innov. Food Sci. Emerg. Technol. 27: 15-25.
Minekus, M., M. Alminger, P. Alvito, S. Ballance, T. Bohn, C. Bourlieu, F. Carriere, R. Boutrou, M. Corredig, D. Dupont, C. Dufour, L. Egger, M. Golding, S. Karakaya, B. Kirkhus, S. Le Feunteun, U. Lesmes, A. Macierzanka, A. Mackie, S. Marze, D. J. McClements, O. Menard, I. Recio, C. N. Santos, R. P. Singh, G. E. Vegarud, M. S. Wickham, W. Weitschies and A. Brodkorb. 2014. A standardised static in vitro digestion method suitable for food - an international consensus. Food & Function. 5: 1113-1124.
Noshad, M., M. Mohebbi, F. Shahidi and A. Koocheki. 2015. Effect of layer-by-layer polyelectrolyte method on encapsulation of vanillin. Int. J. Biol. Macromol. 81: 803-808.
Rad, A. H., M. M. Roudbaneh, V. G. Tabrizian, M. Javadi, N. Harati, H. N. Rad and Z. Kasaie. 2016. Chocolates as a Probiotic Carrier Food - A Review. Int. J. Probiotics and Prebiotics. 11: 37-43.
Ragavan, M. L. and N. Das, Process optimization for microencapsulation of probiotic yeasts. 2018. Front. Biol. 13: 197-207.
Ranadheera, C. S., N. Naumovski and S. Ajlouni. 2018. Non-bovine milk products as emerging probiotic carriers: Recent developments and innovations. Curr. Opin. Food Sci. 22: 109-114.
Sandoval-Castilla, O., C. Lobato-Calleros, H. García-Galindo, J. Alvarez-Ramírez and E. Vernon-Carter. 2010. Textural properties of alginate–pectin beads and survivability of entrapped Lb. casei in simulated gastrointestinal conditions and in yoghurt. Food Res. Int 43: 111-117.
Silva, M. P., F. L. Tulini, J. F. Marinho, M. C. Mazzocato, E. C. De Martinis, V. Luccas and C. Favaro-Trindade. 2017. Semisweet chocolate as a vehicle for the probiotics Lactobacillus acidophilus LA3 and Bifidobacterium animalis subsp. lactis BLC1: Evaluation of chocolate stability and probiotic survival under in vitro simulated gastrointestinal conditions. LWT. 75: 640-647.
Soukoulis, C., S. Behboudi-Jobbehdar, L. Yonekura, C. Parmenter and I. Fisk. 2014. Impact of milk protein type on the viability and storage stability of microencapsulated Lactobacillus acidophilus NCIMB 701748 using spray drying. Food Bioprocess Tech. 7: 1255-1268.
Succi, M., P. Tremonte, G. Pannella, L. Tipaldi, A. Cozzolino, R. Romaniello, E. Sorrentino and R. Coppola. 2017. Pre-cultivation with Selected Prebiotics Enhances the Survival and the Stress Response of Lactobacillus rhamnosus Strains in Simulated Gastrointestinal Transit. Front. Microbiol. 8: 1067.
Tripathi, M. K. and S. K. Giri. 2014. Probiotic functional foods: Survival of probiotics during processing and storage, J. funct. foods. 9: 225-241.
Vaziri, A. S., I. Alemzadeh, M. Vossoughi and A. C. Khorasani. 2018. Co-microencapsulation of Lactobacillus plantarum and DHA fatty acid in alginate-pectin-gelatin biocomposites. Carbohyd. poly. 199: 266-275.
Wang, L., X. Yu, H. Xu, Z. P. Aguilar and H. Wei. 2016. Effect of skim milk coated inulin-alginate encapsulation beads on viability and gene expression of Lactobacillus plantarum during freeze-drying. LWT. 68: 8-13.
Wasilewski, A., M. Zielińska, M. Storr and J. Fichna. 2015. Beneficial effects of probiotics, prebiotics, synbiotics, and psychobiotics in inflammatory bowel disease. Inflamm. Bowel Dis. 21: 1674-1682.
Wu, J., M. Shi, W. Li, L. Zhao, Z. Wang, X. Yan, W. Norde and Y. Li. 2015. Pickering emulsions stabilized by whey protein nanoparticles prepared by thermal cross-linking, Colloid. Surface. B. 127: 96-104.
Xu, M., F. Gagné-Bourque, M. J. Dumont and S. Jabaji. 2016. Encapsulation of Lactobacillus casei ATCC 393 cells and evaluation of their survival after freeze-drying, storage and under gastrointestinal conditions. J. Food Eng. 168:, 52-59.
Yasmin, I., M. Saeed, I. Pasha and M. A. Zia. 2019. Development of whey protein concentrate-pectin-alginate based delivery system to improve survival of B. longum BL-05 in simulated gastrointestinal conditions, Probiotics Antimicro. 11: 413-426.
Zhang, Y., J. Lin and Q. Zhong. 2015. The increased viability of probiotic Lactobacillus salivarius NRRL B-30514 encapsulated in emulsions with multiple lipid-protein-pectin layers. Food Res. Int. 71: 9- 15.