Enrichment of sliced apple fruit with Bacillus coagulans

Authors

  • Mayra Cristina Soto Caballero Universidad Autónoma de Chihuahua, Facultad de Ciencias Agrotecnologicas. Escorza 900, col. Centro. Chihuahua, Chihuahua, 31500, Mexico.
  • Carlos Horacio Acosta Muñiz Centro de Investigación en Alimentación y Desarrollo A.C. Coordinación Cuauhtémoc. Av. Río Conchos s/n Parque Industrial. Cuauhtémoc, Chihuahua. 31570, Mexico.
  • Viridiana Chávez Leal Universidad Autónoma de Chihuahua, Facultad de Ciencias Agrotecnologicas. Escorza 900, col. Centro. Chihuahua, Chihuahua, 31500, Mexico.
  • Gustavo González Aguilar Centro de Investigación en Alimentación y Desarrollo A.C. Carretera a la Victoria Km. 0.6, Hermosillo, Sonora, 83000 Mexico.
  • Cintya Geovanna Soria Hernández Instituto Tecnologico de Monterrey, School of Engineering and Science. Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo León, 64849 Mexico.
  • Graciela Dolores Avila Quezada Universidad Autónoma de Chihuahua, Facultad de Ciencias Agrotecnologicas. Escorza 900, col. Centro. Chihuahua, Chihuahua, 31500, Mexico.

DOI:

https://doi.org/10.9755/ejfa.2021.v33.i1.2353

Abstract

The effect of addition of the probiotic agent Bacillus coagulans to apples by applying a vacuum impregnation process was studied. Apple slices were impregnated with a sucrose isotonic solution (IS) of 14°Bx containing 1010 CFU g-1 of B. coagulans. The effect of vacuum (22, 29, 36 and 43 cm Hg for 5 min.) and relaxation time (35, 60, 120, 180 and 204 min.) was studied. The highest impregnation of IS (up to 17%) in apple slices was obtained in long relaxation times (120, 180 and 204 min.) and low vacuum pressures (22 cm Hg). The highest vacuum pressure (43 cm Hg) at any relaxation time yielded high concentration of impregnated B. coagulans cells (4 x 107 UFC g-1) into apple slices. The results confirm that B. coagulans at this concentration is satisfactory and similar to that concentration levels of probiotics contained in products existing in the market. Therefore, this article proposes the application of probiotic microorganisms in apple, being this fruit a suitable food matrix for probiotic bacteria.

Downloads

Download data is not yet available.

References

Abhari, K., Shekarforoush, S.S., Hosseinzadeh, S., Nazifi, S., Sajedianfard, J. and Eskandari, M.H. 2016. The effects of orally administered Bacillus coagulans and inulin on prevention and progression of rheumatoid arthritis in rats. Food Nutr. Res. 60(1):30876.
Alzamora, S.M., Salvatori, D., Tapia, M.S., López-Malo, A., Welti-Chanes, J. and Fito, P. 2005. Novel functional foods from vegetable matrices impregnated with biologically active compounds. J. Food Eng. 67(1-2):205-214.
Ashitha, G.N. and Prince, M.V. 2018. Vacuum Impregnation: Applications in Food Industry. Int. J. Food Ferment. Technol. 8(2):141-151.
Assis, F.R., Rodrigues, L.G.G., Tribuzi, G., de Souza, P.G., Carciofi, B.A.M. and Laurindo, J.B. 2019. Fortified apple (Malus spp. cv. Fuji) snacks by vacuum impregnation of calcium lactate and convective drying. LWT-Food Sci. Technol. 113:108298.
Avila-Quezada, G., Sánchez, E., Gardea-Béjar, A.A. and Acedo-Félix, E. 2010. Salmonella spp. and Escherichia coli: survival and growth in plant tissue. N.Z.J. Crop Hortic. Sci. 38(2):47-55.
Avila-Quezada, G.D. and Espino-Solis, G.P. 2019. Silver Nanoparticles Offer Effective Control of Pathogenic Bacteria in a Wide Range of Food Products. In: Pathogenic bacteria. Interchopen, Croatia. Retrieved on October 02, 2020 from: https://www.intechopen.com/online-first/silver-nanoparticles-offer-effective-control-of-pathogenic-bacteria-in-a-wide-range-of-food-products
Bchir, B., Besbes, S., Attia, H. and Blecker, C. 2009. Osmotic dehydration of pomegranate seeds: mass transfer kinetics and differential scanning calorimetry characterization. Int. J. Food Sci. Technol. 44(11):2208-2217.
Betoret, N., Puente, L., Dıaz, M.J., Pagan, M.J., Garcia, M.J., Gras, M.L., Martínez-Monzó, J. and Fito, P. 2003. Development of probiotic-enriched dried fruits by vacuum impregnation. J. Food Eng. 56(2-3):273-277.
Castagnini, J.M., Betoret, N., Betoret, E. and Fito, P. 2015. Vacuum impregnation and air drying temperature effect on individual anthocyanins and antiradical capacity of blueberry juice included into an apple matrix. LWT-Food Sci. Technol. 64(2):1289-1296.
Champagne, C.P., da Cruz, A.G. and Daga, M. 2018. Strategies to improve the functionality of probiotics in supplements and foods. Curr. Opin. Food Sci. 22:160-166.
Cotter, P.D., Ross, R.P. and Hill, C. 2013. Bacteriocins-a viable alternative to antibiotics?. Nat. Rev. Microbiol. 11(2):95-105.
De Oliveira, P.M., Leite Júnior, B.R., Martins, M.L., Martins, E.M.F. and Ramos, A.M. 2014. Minimally processed yellow melon enriched with probiotic bacteria. Semin. Cienc. Agrar. 35(5):2415-2426. Retrieved on Octuber 08, 2020 from: https://www.locus.ufv.br/handle/123456789/17845
de Oliveira, P.M., Ramos, A.M., Martins, E.M.F., Vieira, E.N.R., Soares, A.D.S. and de Noronha, M.C. 2017. Comparison of vacuum impregnation and soaking techniques for addition of the probiotic Lactobacillus acidophilus to minimally processed melon. Int. J. Food Sci. Technol. 52(12):2547-2554.
Derossi, A., De Pilli, T. and Severini, C. 2012. The application of vacuum impregnation techniques in food industry. In: Valdez, B. (ed.). Scientific, health and social aspects of the food industry. Croatia: InTech Europe. p. 25-56.
Deng, Y. and Zhao, Y. 2008. Effect of pulsed vacuum and ultrasound osmopretreatments on glass transition temperature, texture, microstructure and calcium penetration of dried apples (Fuji). Food Sci. Technol. 41(9):1575-1585.
Elshaghabee, F.M., Rokana, N., Gulhane, R.D., Sharma, C. and Panwar, H. 2017. Bacillus as potential probiotics: status, concerns, and future perspectives. Front. Microbiol. 8:1490.
Flores-Andrade, E., Pascual-Pineda, L.A., Alarcón-Elvira, F.G., Rascón-Díaz, M.P., Pimentel-González, D.J. and Beristain, C.I. 2017. Effect of vacuum on the impregnation of Lactobacillus rhamnosus microcapsules in apple slices using double emulsion. J. Food Eng. 202:18-24.
Ganjloo, A., Rahman, R.A., Bakar, J., Osman, A. and Bimakr, M. 2014. Optimization of osmotic dehydration of seedless guava (Psidium guajava L.) in sucrose solution using response surface methodology. Int. J. Food Eng. 10(2):307-316.
Granato, D., Branco, G.F., Nazzaro, F., Cruz, A.G. and Faria, J.A.F. 2010. Functional foods and non dairy probiotic food development: trends, concepts, and products. Compr. Rev. Food Sci. Food Saf. 9(3):292-302.
Guan, Y., Peace, C., Rudell, D., Verma, S. and Evans, K. 2015. QTLs detected for individual sugars and soluble solids content in apple. Mol. Breed. 35(6):135.
Haldar, L. and Gandhi D.N. 2016. Effect of oral administration of Bacillus coagulans B37 and Bacillus pumilus B9 strains on fecal coliforms, Lactobacillus and Bacillus spp. in rat animal model. Vet. World 9(7):766.
International Organization for Standardization (1993) 2nd Ed., Geneva, Switzerland, Method ISO 793.
Jager, R., Shields, K.A., Lowery, R.P., De Souza, E.O., Partl, J.M., Hollmer, C., Purpura, M. and Wilson, J.M. 2016. Probiotic Bacillus coagulans GBI-30, 6086 reduces exercise-induced muscle damage and increases recovery. Peer J 4:e2276.
Jayaprakasha, H. M., Jayaraj Rao, K. and Lokesh Kumar, W.A. 1997. Studies on the influence of water activity (aw) on the stability of foods: A critical appraisal. J. Food Sci. Technol. (Mysore) 34(4):273-285.
Joshi, A., Kar, A., Rudra, S.G., Sagar, V.R., Varghese, E., Lad, M., Khan, I. and Singh, B. 2016. Vacuum impregnation: a promising way for mineral fortification in potato porous matrix (potato chips). J. Food Sci. Technol. 53(12):4348-4353.
Jurenka, J.S. 2012. Bacillus coagulans. Altern. Med. Rev. 17(1):76-82.
Kähler, C.J., Scholz, U. and Ortmanns, J. 2006. Wall-shear-stress and near-wall turbulence measurements up to single pixel resolution by means of long-distance micro-PIV. Exp. Fluids 41(2):327-341.
Kourkoutas, Y., Kanellaki, M. and Koutinas, A.A. 2006. Apple pieces as immobilization support of various microorganisms. LWT- Food Sci. Technol. 39(9):980-986.
Kroos, L. 2005. Eukaryotic-like signaling and gene regulation in a prokaryote that undergoes multicellular development. PNAS 102(8):2681-2682.
Laurindo, J.B., Stringari, G.B., Paes, S.S. and Carciofi, B.A.M. 2007. Experimental determination of the dynamics of vacuum impregnation of apples. J. Food Sci. 72(8):470-475.
Lewicki, P.P. and Porzecka-Pawlak, R. 2005. Effect of osmotic dewatering on apple tissue structure. J. Food Eng. 66(1):43-50.
Madureira, A.R., Amorim, M., Gomes, A.M., Pintado, M.E. and Malcata, F.X. 2011. Protective effect of whey cheese matrix on probiotic strains exposed to simulated gastrointestinal conditions. Food Res. Int. 44(1):465-470.
Mendoza, F., Verboven, P., Ho, Q.T., Kerckhofs, G., Wevers, M. and Nicolaï, B. 2010. Multifractal properties of pore-size distribution in apple tissue using X-ray imaging. J. Food Eng. 99(2):206-215.
Mujica-Paz, H., Valdez-Fragoso, A., López-Malo, A., Palou, E. and Welti-Chanes, J. 2003. Impregnation properties of some fruits at vacuum pressure. J. Food Eng. 56(4):307-314.
Neri, L., Biase, L.D., Sacchetti, G., Di Mattia, C., Santarelli, V., Mastrocola, D. and Pittia, P. 2016. Use of vacuum impregnation for the production of high quality freshlike apple products. J. Food Eng. 179:98-108.
Nótin, B., Stéger-Máté, M., Juhász, R., Jakab, D., Monspart-Sényi, J. and Barta, J. 2011. Changes of phenolic compounds in black currant during vacuum drying process. Acta Aliment. 40(Supplement 1): 120-129.
Official Methods of Analysis. 2000. 17th Ed., AOAC International, Gaithersburg, MD, Method 980.31
Peres, C.M., Peres, C., Hernández-Mendoza, A. and Malcata, F.X. 2012. Review on fermented plant materials as carriers and sources of potentially probiotic lactic acid bacteria — With an emphasis on table olives. Trends Food Sci. Technol. 26(1):31-42.
Phianmongkhol, A. and Wirjantoro, T. I. 2016. Effect of ripening stage and vacuum pressure on vacuum impregnated mango “Chok Anan.” Int. Food Res. J. 23(3):1085-1091.
Radziejewska-Kubzdela, E., Biegańska-Marecik, R. and Kidoń, M. 2014. Applicability of vacuum impregnation to modify physico-chemical, sensory and nutritive characteristics of plant origin products - a review. Int. J. Mol. Sci. 15(9):16577-16610.
Ranadheera, R.D.C.S., Baines, S.K. and Adams, M.C. 2010. Importance of food in probiotic efficacy. Food Res. Int. 43(1):1-7.
Rascón, M.P., Huerta-Vera, K., Pascual-Pineda, L.A., Contreras-Oliva, A., Flores-Andrade, E., Castillo-Morales, M., Bonilla, E. and González-Morales, I. 2018. Osmotic dehydration assisted impregnation of Lactobacillus rhamnosus in banana and effect of water activity on the storage stability of probiotic in the freeze-dried product. LWT- Food Sci. Technol. 92:490-496.
Rastogi, N.K., Raghavarao, K.S.M.S. and Niranjan, K. 2014. Recent developments in osmotic dehydration. In: Da-Wen Sun (ed.). Emerging technologies for food processing Academic Press. University College Dublin, National University of Ireland, Dublin, Ireland. p. 181-212.
Rößle, C., Auty, M.A.E., Brunton, N., Gormley, R.T. and Butler, F. 2010. Evaluation of fresh-cut apple slices enriched with probiotic bacteria. Innov. Food Sci. Emerg. Technol. 11(1):203-209.
Rodrigues, S., Silva, L.C., Mulet, A., Cárcel, J.A. and Fernandes, F.A. 2018. Development of dried probiotic apple cubes incorporated with Lactobacillus casei NRRL B-442. J. Funct. Foods 41:48-54.
Russo, P., de Chiara, M.L.V., Vernile, A., Amodio, M.L., Arena, M.P., Capozzi, V., Massa, S. and Spano, G. 2014. Fresh-cut pineapple as a new carrier of probiotic lactic acid bacteria. BioMed Res. Int. ID e309183.
Schulze, B., Peth, S., Hubbermann, E.M. and Schwarz, K. 2012. The influence of vacuum impregnation on the fortification of apple parenchyma with quercetin derivatives in combination with pore structures X-ray analysis. J. Food Eng. 109(3):380-387.
Shori, A.B. 2015. The potential applications of probiotics on dairy and non‐dairy foods focusing on viability during storage. Biocatal. Agric. Biotechnol. 4(4):423-431.
Sumi, C.D., Yang, B.W., Yeo, I.C. and Hahm, Y.T. 2014. Antimicrobial peptides of the genus Bacillus: a new era for antibiotics. Can. J. Microbiol. 61(2):93-103.
Szymanski, D.B. and Cosgrove, D.J. 2009. Dynamic coordination of cytoskeletal and cell wall systems during plant cell morphogenesis. Curr. Biol. 19(17):R800-R811.
Tappi, S., Tylewicz, U., Romani, S., Dalla Rosa, M., Rizzi, F. and Rocculi, P. 2017. Study on the quality and stability of minimally processed apples impregnated with green tea polyphenols during storage. Innov. Food Sci. Emerg. Technol. 39:148-155.
Ugras, S., Sezen, K., Kati, H. and Demirbag, Z. 2013. Purification and characterization of the bacteriocin Thuricin Bn1 produced by Bacillus thuringiensis subsp. kurstakiBn1 isolated from a hazelnut pest. J. Microbiol. Biotechnol. 23(2):167-176.
Zunin, P., Turrini, F., Leardi, R. and Boggia, R. 2017. Olive fruits and vacuum impregnation, an interesting combination for dietetic iron enrichment. J. Food Sci. Technol. 54(2):481-487.
Puente, D. L., Betoret, V.N. and Cortés, R.M. 2009. Evolution of probiotic content and color of apples impregnated with lactic acid bacteria. Vitae 16(3):297-303.
Van Liedekerke, P., Ghysels, P., Tijskens, E., Samaey, G., Roose, D. and Ramon, H. 2011. Mechanisms of soft cellular tissue bruising. A particle based simulation approach. Soft Matter 7(7):3580-3591.

Published

2021-01-31

How to Cite

Caballero, M. C. S., C. H. A. Muñiz, V. C. Leal, G. G. Aguilar, C. G. S. Hernández, and G. D. A. Quezada. “Enrichment of Sliced Apple Fruit With Bacillus Coagulans”. Emirates Journal of Food and Agriculture, vol. 33, no. 1, Jan. 2021, pp. 12-19, doi:10.9755/ejfa.2021.v33.i1.2353.

Issue

Section

Research Article

Most read articles by the same author(s)