Characteristics and composition of hackberries (Celtis australis L.) from Mediterranean forests`

Authors

  • Esther Vidal Cascales Department of Food Science & Technology and Human Nutrition, Campus de Espinardo, University of Murcia, 30100 Murcia, Spain
  • Domenico Prencipe Department of Food Science & Technology and Human Nutrition, Campus de Espinardo, University of Murcia, 30100 Murcia, Spain
  • Claudia Nocentini Department of Food Science & Technology and Human Nutrition, Campus de Espinardo, University of Murcia, 30100 Murcia, Spain
  • Reyes López Sánchez Celtis Innova S.L., Huerto Ramayo 20, 30440 Moratalla, Murcia, Spain
  • José María Ros García Celtis Innova S.L., Huerto Ramayo 20, 30440 Moratalla, Murcia, Spain

DOI:

https://doi.org/10.9755/ejfa.2021.v33.i1.2375

Abstract

The characteristics and composition of hackberries (Celtis australis L.) from Mediterranean forests were stablished and compared to other fruits. Fresh hackberries were fractionated in peel (19.8%), flesh (49.7%) and stone (29.4%). A very high value of soluble solids (53.6 ºBrix) was found in the flesh. Chromatographic analysis indicated that the flesh soluble solids were mainly sucrose (12.8%), glucose (17.5%) and fructose (21.8%). An average antioxidant activity (FRAP) of 4000 μmol eq. Fe2+/100 g and a DPPH scavenging capacity (IC50) of 7 were found. The antioxidant properties are due to the content of phenolic compounds and flavonoids, 249 and 28 mg/100 g, respectively, in the flesh. The dietary fibre in the flesh was 18 g/100 g. The hackberries flesh cell wall is constituted by pectins (55.7%) and hemicelluloses (44.4%). According to these results, hackberry would be considered of great interest for its applications as sweeting agent with antioxidant, thickener and dietary properties, in the food industry.

Downloads

Download data is not yet available.

References

AOAC. 2000. No. 967.21 Ascorbic acid in vitamin preparations and juices. In Official methods of analysis (17th ed.). Gaithersburg, MD, USA: Association of Official Analytical Chemists.
Apolinar-Valiente, R., I. Romero-Cascales, J. M. López-Roca, E. Gómez-Plaza and J. M. Ros-García. 2010. Application and comparison of four selected procedures for the isolation of cell-wall material from the skin of grapes cv. Monastrell. Anal. Chim. Acta 660: 206-210.
Benzie, F. F. and J. J. Strain. 1996. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 239(1): 70-76.
Boudraa, S., L. Hambaba, S. Zidani and H. Boudraa. 2010. Composition minerale et vitaminique des fruits de cinq especes sous exploitees en Algerie: Celtis australis L., Crataegus azarolus L., Crataegus monogyna Jacq., Elaeagnus angustifolia L. et Zizyphus lotus L. Fruits 65(2): 75-84.
Chang, C. C., M. H. Yang, H. M. Wen and J. C. Chern. 2002. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drugs Anal. 10(3): 178-182.
Coll-Almela, L., D. Saura-López, J. Laencina-Sánchez, H. A. Schols, A. G. J. Voragen and J. M. Ros-García. 2015. Characterisation of cell-wall polysaccharides from mandarin segment membranes. Food Chem. 175: 36-42.
de Vries, J. A., A. G. J. Voragen, F. M. Rombouts and W. Pilnik. 1981. Extraction and purification of pectins from alcohol insoluble solids from ripe and unripe apples. Carbohydr. Polym. 1: 117-127.
Demir, F., H. Dogan, M. Ozcan and H. Haciseferogullari. 2002. Nutritional and physical properties of hackberry (Celtis australis L.). J. Food Eng. 54(3): 241-247.
Dróżdż, P., V. Šėžienė, J. Wójcik and K. Pyrzyńska. 2018. Evaluation of bioactive compounds, minerals and antioxidant activity of lingonberry (Vaccinium vitis-idaea L.) fruits. Molecules 23(1): 53.
El-Alfy, T. S. M. A., H. M. A. El-Gohary, N. M. Sokkar, S. A. El-Tawab and D. A. M. Al-Mahdy. 2011a. Botanical and genetic characteristics of Celtis australis L. and Celtis occidentalis L. grown in Egypt. Bull. Fac. Pharm., Cairo Univ. 49: 37-57.
El-Alfy, T. S., H. M. A. El-Gohary, N. M. Sokkar, M. Hosny and D. A. Al-Mahdy. 2011b. A new flavonoid C-glycoside from Celtis australis L. and Celtis occidentalis L. leaves and potential antioxidant and cytotoxic activities. Sci. Pharm. 79: 963-975.
Figuerola, F. E. 2007. Berry jams and jellies. In Food Science and Technology. Marcel Dekker, New York, USA. vol. 168, p. 367.
Food Data Central. 2020. United States Department of Agriculture. Agricultural Research Service. https://fdc.nal.usda.gov/
González-Hidalgo, I., S. Bañón and J. M. Ros. 2012. Evaluation of table olive by-product as a source of natural antioxidants. Int. J. Food Sci. Technol. 47: 674-681.
González-Hidalgo, I., D. A. Moreno, C. García-Viguera and J. M. Ros-García. 2019. The effect of industrial freezing on the physical and nutritional quality traits in broccoli. Food Sci. Technol. Int. 25(1): 56-65.
Hellín, P., J. M. Ros and J. Laencina, J. 2001. Changes in high and low molecular weight carbohydrates during Rhizopus nigricans cultivation on lemon peel. Carbohydr. Polym. 45(2): 169–174.
Kitic, D., G. J. Favetto, J. Chirife and S. L. Resnik, S.L. 1986. Measurement of water activity in the intermediate moisture range with the Novasina Thermoconstanter humidity meter. LWT - Food Sci. Technol. 19(4): 297-301.
Koh, J., Z. Xu and L. Wicker. 2020. Blueberry pectin and increased anthocyanins stability under in vitro digestion. Food Chem. 302: 125343.
Lin, J. Y. and C. Y. Tang. 2007. Determination of total phenolic and flavonoid content in selected fruits and vegetables, as well as their stimulatory effects on mouse splenocyte proliferation. Food Chem. 101(1): 140-147.
Ma, C., Z. Sun, C. Chen, L. Zhang and S. Zhu. 2014. Simultaneous separation and determination of fructose, sorbitol, glucose and sucrose in fruits by HPLC–ELSD. Food Chem. 145: 784-788.
Magni, D. and G. Caudullo. 2016. Celtis australis in Europe: distribution, habitat, usage and threats. In San-Miguel-Ayanz, J, de Rigo, D., Caudullo, G., Houston Durrant T. and Mauri, A. (eds.). European Atlas of Forest Tree Species. Publications Officielles de l'Union Européenne, Luxembourg. p. e0145f9+.
Nawirska-Olszańska, A., M. Pasławska, B. Stępień, M. Oziembłowski, K. Sala and A. Smorowska. 2020. Effect of vacuum impregnation with apple-pear juice on content of bioactive compounds and antioxidant activity of dried chokeberry fruit. Foods 9(1): 108.
Nielsen, S. S. 2010. Determination of Moisture Content. In: Nielsen, S. S. (ed.). Food Analysis Laboratory Manual. Food Sci. Texts Series. Springer, Boston, MA, USA. pp. 17-27.
Ota, A., A. Miklavcic-Višnjevec, R. Vidrih, Z. Prgomet, M. Necemer, J. Hribar, N. Gunde-Cimerman, S. Smole-Možina, M. Bucar-Miklavcic and N. Poklar-Ulrih. 2017. Nutritional, antioxidative, and antimicrobial analysis of the Mediterranean hackberry (Celtis australis L.). Food Sci. Nutr. 5(1): 160-170.
Prosky, L., N. G. Asp, T. F. Schweizer, J. W. De Vries and I. Furda. 1988. Determination of insoluble, soluble, and total dietary fibre in foods and food products: interlaboratory study. J. Ass. Off. Anal. Chem. 71: 1017-1023.
Ros, J. M., J. Laencina, P. Hellín, M. J. Jordán, R. Vila and K. Rumpunen. 2004. Characterization of juice in fruits of different Chaenomeles species. LWT-Food Sci. Technol. 37: 301-307.
Ros, J. M., H. A. Schols and A. G. J. Voragen. 1996. Extraction, characterisation and enzymatic degradation of lemon peel pectins. Carbohydr. Res. 282: 271-284.
Ros, J. M., H. A. Schols and A. G. J. Voragen. 1998. Lemon albedo cell walls contain distinct populations of pectic hairy regions. Carbohydr. Polym. 37: 159-166.
Schols, H. A., E. Vierhuis, E. Bakx, and A. G. J. Voragen. 1995. Different populations of pectic hairy regions occur in apple cell walls. Carbohydr. Res. 275: 343-360.
Scott, R.W. 1979. Colorimetric determination of hexuronic acids in plant materials. Anal. Chem. 51(7): 936-941.
Sommavilla, V., D. Haidacher-Gasser, M. Sgarbossa and C. Zidorn. 2012. Seasonal variation in phenolics in leaves of Celtis australis (Cannabaceae). Biochem. Syst. Ecol. 41: 110-114.
Spitaler, R., S. Gurschler, E. Ellmerer, B. Schubert, M. Sgarbossa and C. Zidorn. 2009. Flavonoids from Celtis australis (Cannabaceae). Biochem. Syst. Ecol. 37: 120-121.
Vega Gálvez, A., K. Di Scala, K. Rodríguez, R. Lemus Mondaca, M. Miranda, J. López and M. Pérez Won. 2009. Effects of air-drying temperature on physico-chemical properties, antioxidant capacity, colour and total phenolic content of red pepper (Capsicum annuum L. var. Hungarian). Food Chem. 117: 647-653.
Vidal Cascales, E. and J. M. Ros García. 2020. Characteristics of the raw fruit, industrial pulp, and commercial jam elaborated with Spanish quince (Cydonia oblonga Miller). Emir. J. Food Agric. 32(8): 623-633.
Zehrmann, N., C. Zidorn and M. Ganzera. 2010. Analysis of rare flavonoid c-glycosides in Celtis australis L. by micellar electrokinetic chromatography. J. Pharm. Biomed. Anal. 51(5): 1165-1168.
Zhou, K. and L. Yu. 2004. Antioxidant properties of bran extract from Trego wheat grown at different locations. J. Agric. Food Chem. 52(5): 1112-1117.

Published

2021-01-31

How to Cite

Cascales, E. V., D. Prencipe, C. Nocentini, R. L. Sánchez, and J. M. R. García. “Characteristics and Composition of Hackberries (Celtis Australis L.) from Mediterranean Forests`”. Emirates Journal of Food and Agriculture, vol. 33, no. 1, Jan. 2021, pp. 37-44, doi:10.9755/ejfa.2021.v33.i1.2375.

Issue

Section

Research Article