Leaf mineral element content and soil characteristics on in vitro antioxidant and enzymatic inhibitory activities of aqueous fennel extracts

Authors

  • Nesrine Majdoub Department of Chemistry and Pharmacy, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
  • Soukaina el Guendouz Department of Chemistry and Pharmacy, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
  • Jorge Carlier Centre of Marine Sciences (CCMAR), University of the Algarve, Gambelas Campus, 8005 139 Faro, Portugal
  • Clara Costa Centre of Marine Sciences (CCMAR), Faculdade de Ciências e Tecnologia, Gambelas Campus, University of the Algarve, 8005 139 Faro, Portugal
  • Carlos Alberto Correia Guerrero Department of Chemistry and Pharmacy, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
  • João Duarte Department of Chemistry and Pharmacy, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
  • Maria Graça Migue Department of Chemistry and Pharmacy, Mediterranean Institute for Agriculture, Environment and Development, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal

DOI:

https://doi.org/10.9755/ejfa.2021.v33.i1.2570

Abstract

This study was conducted to evaluate the biochemical characterization of three harvested Foeniculum vulgare plants collected from two bioclimatic zones in order to investigate the soil growing conditions effect. The results showed a great variability of the phenolic amounts and biological properties of samples rely on localities. FvSEN contained the highest amounts of phenolic compounds. These amounts were accompanied by the greatest antioxidant ability through almost studied assays. FvSEN and FvZO were significantly different. In addition, the samples exhibited a significant and variable enzymatic inhibition activity with values ranging from 30 to 50 µg/mL for lipoxygenase assay. But these extracts did not revealed significant differences on their tyrosinase abilities. On the other hand, the levels of mineral elements were also estimated. These contents varied depending on sample and locality. The growing soil conditions of samples in terms of different parameters is likely related to their antioxidant and enzyme inhibition potentialities added to their mineral composition which settled by Spearman’s correlation. These data may confirm the interesting potential of F. vulgare as a valuable source for natural antioxidant molecules but the growing soil conditions can affect all the potentialities of these plants set for human consumption and other uses.

Downloads

Download data is not yet available.

References

Aazza, S., B. Lyoussi and M. G. Miguel. 2011. Antioxidant and antiacetylcholinesterase activities of some commercial essential oils and their major compounds. Molecules 16: 7672-7690.
Acker, S. A. B. E., M. N. J. L. Tromp, G. R. M. M. Haenen, W. J. F. Vijgh and A. Bast. 1995. Flavonoids as scavengers of nitric oxide radical. Biochem. Biophys. Res. Commun. 214: 755-759.
Albano, S. M. and M. G. Miguel. 2010. Biological activities of extracts of plants grown in Portugal. Ind. Crops Prod. 33: 338–343.
Ali, M.B., N. Singh, A. M. Shohael, E. J. Hahn and K. Y. Paek. 2006. Phenolics metabolism and lignin synthesis in root suspension cultures of Panax ginseng in response to copper stress. Plant Sci. 171: 147–154.
Badgujar, S. B., V. V. Patel and A. H. Bandivdekar. 2014. Foeniculum vulgare Mill: A review of its botany, phytochemistry, pharmacology, contemporary application, and toxicology. BioMed Res. Int. 2014: 1-32.
Barros, L., S. A. Heleno, A. M. Carvalho and I. C. F. R. Ferreira. 2009. Systematic evaluation of the antioxidant potential of different parts of Foeniculum vulgare Mill. from Portugal. Food Chem. Toxicol. 47: 2458–2464.
Boulanouar, B., G. Abdelaziz, S. Aazza, C. Gago and M. G. Miguel. 2013. Antioxidant activities of eight Algerian plant extracts and two essential oils. Ind. Crops Prod. 46: 85–96.
Bravo, S., J. A. Amorós, C. Pérez-de-los-Reyes, F. J, García, M. M. Moreno, M. Sánchez-Ormeño and P. Higueras. 2017. Influence of the soil pH in the uptake and bioaccumulation of heavy metals (Fe, Zn, Cu, Pb and Mn) and other elements (Ca, K, Al, Sr and Ba) in vine leaves, Castilla-La Mancha (Spain). J. Geoch. Explor. 174: 79–83.
Bremner, J. M. 1965. Total Nitrogen. In C. A. Black, D. D. Evans, Y. L .White, L. E. Susminger and F. E. Clark (Eds.), Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties (pp. 1149–1178). American Society of Agronomy, Madison.
Burlando, B., M. Clericuzio and L. Cornara. 2017. Moraceae plants with tyrosinase inhibitory activity:a review. Mini-Rev.Med.Chem.17: 108-121.
Castáneda, P. and L. M. Pérez. 1996. Calcium ions promote the response of Citrus limon against fungal elicitors or wounding. Phytochem. 42: 595–598.
Chizzola, R., H.·Michitsch and C.·Franz. 2003. Monitoring of metallic micronutrients and heavy metals in herbs, spices and medicinal plants from Austria. Eur. Food Res. Technol. 216: 407–411.
da Silva, J. M., B. N. Silva, G. A. I. Barrera, R. S. Arruda, P. C. R. Fontes, P. R. G. Pereira. 2019. Shoot nutrient contents and vegetative melon plants growth at different pH levels of the nutrient solution. Emir. J. Food Agric. 31: 674-678.
Dahnke, W. C. and D. A. Whitney. 1988. Measurement of Soil Salinity. In W.C. Dahnke (Ed.), Recommended chemical soil test procedures for the North Central Region (pp. 32-34). North Dakota Agric. Exp. Stn. Bull.
Diao, W.-R., Q.-P. Hu, H. Zhang and J.-G. Xu J-G. 2014. Chemical composition, antibacterial activity and mechanism of action of essential oil from seeds of fennel (Foeniculum vulgare Mill.). Food Control. 5: 109-116.
Díaz-Maroto, M. C., H. I. J. Díaz-Maroto, E. Sánchez-Palomo and M. S. Pérez-Coello. 2005. Volatile components and key odorants of fennel (Foeniculum vulgare Mill.) and thyme (Thymus vulgaris L.) oil extracts obtained by simultaneous distillation-extraction and supercritical fluid extraction. J. Agric. Food Chem. 53: 5385-5389.
Díaz-Maroto, M. C., M. S. Pérez-Coello, J. Esteban and J. Sanz. 2006. Comparison of the volatile composition of wild fennel samples (Foeniculum vulgare Mill.) from Central Spain. J. Agric. Food Chem. 54: 6814-6818.
Drouineau, J. 1942. Dosage rapid du calcaire actif des sols. Annals Agron. 1942: 441–450.
El-Guendouz, S., S. Aazza, B. Lyoussi, M. D. Antunes, M. L. Faleiro and M. G. Miguel. 2016. Anti-acetylcholinesterase, antidiabetic, anti-inflammatory, antityrosinase and antixanthine oxidase activities of Moroccan propolis. Int. J. Food Sci. Technol. 51: 1762–1773.
ESDAC - European Soil Data Centre, European Commission, https://esdac.jrc.ec.europa.eu/ last access 10 march 2018.
Faudale, M., F. Viladomat, J. Bastida, F. Poli and C. Codina. 2008. Antioxidant activity and phenolic composition of wild, edible, and medicinal fennel from different Mediterranean countries. J. Agric. Food Chem. 56: 1912-1920.
Gholamhoseinian, A., H. Fallah, F. Sharifi-far and M. Mirtajaddini. 2008. The inhibitory effect of some Iranian plants extracts on the alpha glucosidase. Iranian J. Basic Med. Sci. 11: 1-9.
Haenen, G. R. M. M. and A. Bast. 1999. Nitric oxide radical scavenging of flavonoids. Methods Enzymol. 301: 490-503.
ILACO B.V. – International Land Development Consultants. 1981. Agricultural Compendium for Rural Development in the Tropics and Subtropics. The Netherlands Ministry of Agriculture and Fisheries, the Hague. Elsevier Scientific Publishing Company. Amsterdam – Oxford – New York.
Jagetia, G. C., S. K. Rao, M. S. Baliga and K. S. Babu. 2004. The evaluation of nitric oxide scavenging activity of certain herbal formulations in vitro: A preliminary study. Phytother. Res. 18: 561–565.
Kamatou, G. P. P., A. M. Viljoen and P. Steenkamp. 2010. Antioxidant, anti-inflammatory activities and HPLC analysis of South African Salvia species. Food Chem. 119: 684–688.
Kovácik, J., B. Klejdus and M. Backor. 2009. Phenolic metabolism of Matricaria chamomilla plants exposed to nickel. J. Plant Physiol. 166: 1460–1464.
Lakanen, E. and R. Erviö. 1971. A comparison of eight extractants for determination of plant available micronutrients in soil. Acta Agron. Fenn. 123: 223-232.
Lee, S. Y., N. Baek and T.-G. Nam. 2016. Natural, semisynthetic and synthetic tyrosinase inhibitors. J. Enz. Inhib. Med. Chem. 31: 1-13.
Majdoub, N., S. El-Guendouz, M. Rezgui, J. Carlier, C. Costa, L. B. B. Kaab and M. G. Miguel. 2017. Growth, photosynthetic pigments, phenolic content and biological activities of Foeniculum vulgare Mill., Anethum graveolens L. and Pimpinella anisum L. (Apiaceae) in response to zinc. Ind. Crops Prod. 109: 627-636.
Mata, A. T., C. Proença, A.R. Ferreira, M .L. M. Serralheiro, J. M. F. Nogueira and M. E. M. Araújo. 2007. Antioxidant and antiacetylcholinesterase activities of five plants used as Portuguese food spices. Food Chem. 103: 778–786.
Mclean, E.O. 1982. Soil pH and Lime Requirement. In A.L. Page, (Ed.), Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, American Society of Agronomy (pp.199-224). Soil Science Society of America, Madison.
Mehlich, A. 1953. Determination of P, Ca, Mg, K, Na, and NH4. North Carolina Soil Test Division, Mimeo.
Miguel, M. G., L. Faleiro, M. D. Antunes, S. Aazza, J. Duarte and A. R.. Silvério. 2013. Antimicrobial, antiviral and antioxidant activities of ‘‘água-mel’’ from Portugal. Food Chem. Toxicol. 56: 136-44.
Mishra, B. K., K. K. Meena, P. N. Dubey, O. P. Aishwath, K. Kant, A. M. Sorty and U. Bitla. 2016. Influence on yield and quality of fennel (Foeniculum vulgare Miill.) grown under semi-arid saline soil, due to application of native phosphate solubilising rhizobacterial isolates. Ecol. Eng. 97: 327-333.
Muckensturm, B., D. Foechterlen, J.-P. Reduron, P. Danton and M. Hildenbrand. 1997. Phytochemical and chemotaxonomic studies of Foeniculum vulgare. Biochem. Syst. Ecol. 25: 353-358.
Olsen, S. R., C. V. Cole and S. N. Adams. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. US Circ. 939.
Parejo, I., F. Viladomat, J. Bastida, G. Schmeda-Hirshmann, J. Burillo and C. Codina. 2004. Bioguided isolation and identification of the non-volatile antioxidant compounds from fennel (Foeniculum vulgare Mill.) waste. J. Agric. Food Chem. 52: 1890-1897.
Pottier-Alapetite G. 1979. Flore de la Tunisie: Angiospermes - Dicotylédones. Apétales. Dialypétales. Edit. Imprimerie officielle de la République Tunisienne. Tunis.
Rabot, E., M. Wiesmeier, S. Schlüter and H.-J. Vogel. 2018. Soil structure as an indicator of soil functions. A review. Geoderma, 314: 122-137.
Rackova, L., M. Oblozinsky, D. Kostalova, V. Kettmann and L. Bezakova. 2007. Free radical scavenging activity and lipoxygenase inhibition of Mahonia aquifolium extract and isoquinoline alkaloids. J. Inflamm. 4: 15.
Redrejo-Rodriguez, M., A. Tejeda-Cano, M. C. Pinto and P. Macias. 2004. Lipoxygenase inhibition by flavonoids: semiempirical study of the structure-activity relation. J. Mol. Struct. Treochem. 674: 121-124.
Rejeb, M. N, M. L. Khouja, Z. Ghrabi, R. Chemli, A. Albouchi, A. Khaldi and M. Dahmen. 2006. Guide des plantes médicinales et aromatiques de Tunisie. Maghreb Éditions.
Richards, L.A. 1954. Diagnosis and improvement of saline and alkali soils. US Deptt. of Agric. Handbook.
Rufián-Henares, J. A., C. Delgado-Andrade and F. J. Morales. 2006. Assessing the antioxidant and pro-oxidant activity of phenolic compounds by means of their copper reducing activity CRAI method. Eur. Food Res. Technol. 223: 225−231.
Sayed-Ahmad, B., T. Talou, Z. Saad, A. Hijazi and O. Merah. 2017. The Apiaceae: ethnomedicinal family as source for industrial uses. Ind. Crops Prod. 109: 661-671.
Schinella, G. R., H. A. Tournier, J. M. Prieto, P. Mordujovich de Buschiazzo and J. L. Rios. 2002. Antioxidant activity of anti-inflammatory plant extracts. Life Sci. 70: 1023–1033.
Schnitzer, E., I. Pinchuk and D. Lichtenberg. 2007. Peroxidation of liposomal lipids. Eur. Biophys. J. 36: 499-515.
Shah, A. N., M. Tanveer, B. Shahzad, G. Yang, S. Fahad, S. Ali, M. A. Bukhari, S. A. Tung, A. Hafeez and B. Souliyaninh. 2017. Soil compaction effects on soil health and crop productivity: an overview. Environ. Sci. Pollut. Res. 24: 10056-10067.
Shukla, S., J. Park, D. H. Kim, S. Y. Hong, J. S. Lee and M. Kim. 2016. Total phenolic content, antioxidant, tyrosinase and a-glucosidase inhibitory activities of water soluble extracts of noble starter culture Doenjang, a Korean fermented soybean sauce variety. Food Control 59: 854-861.
Smith, W. L. and R. C. Murphy. 2002. The eicosanoids: cyclooxygenase, lipoxygenase, and epoxygenase pathways. In: Biochemistry of Lipids, lipoproteins and Membranes (pp 341-371). De Vance and JE Vance Elsevier Science BV.
Szwajgler, D. 2015. Anticholinesterase activity of selected phenolic acids and flavonoids – interaction testing in model solutions. Ann. Agric. Environ. Med. 22: 690-694.
Telci, I., I. Demirtas and A. Sahin. 2009. Variation in plant properties and essential oil composition of sweet fennel (Foeniculum vulgare Mill.) fruits during stages of maturity. Ind. Crops Prod. 30: 126-130.
Van de Mortel, J. E., L. A.Villanueva, H. Schat, J. Kwekkeboom, S. Coughlan, P. D., Moerland, E. V. L. van Themaat, M. Koornneef and M. G. M. Aarts. 2006. Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiol. 142: 1127–1147.
Walkley, A. J. and I. A. Black. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 37: 29-38.
Wang, C., J. Lu, S. Zhang, P.F. Wang, J. Hou and J. Qian. 2011. Effects of Pb stress on nutrient uptake and secondary metabolism in submerged macrophyte Vallisneria natans. Ecotoxicol. Environ. Saf. 74: 1297–1303.
Zengin, G., S. Uysal, R. Ceylan and A. Aktumsek. 2015. Phenolic constituent, antioxidative and tyrosinase inhibitory activity of Ornithogalum narbonense L. from Turkey: A phytochemical study. Ind. Crops Prod. 70: 1–6.
Zengin, M., M. M. Ozcan, Ü Cetin and S. Gezgin. 2008. Mineral contents of some aromatic plants, their growth soils and infusions. J. Sci. Food Agric. 88: 581–589.
Zhu, L., J. Wang, Y.Weng, X. Chen and L. Wu. 2020. Soil characteristics of Eucalyptus urophylla × Eucalyptus grandis plantations under different management measures for harvest residues with soil depth gradient across time. Ecol. Indic. 117: 1-12.

Published

2021-03-04

How to Cite

Majdoub, N., S. el Guendouz, J. Carlier, C. Costa, C. A. C. Guerrero, J. Duarte, and M. G. Migue. “Leaf Mineral Element Content and Soil Characteristics on in Vitro Antioxidant and Enzymatic Inhibitory Activities of Aqueous Fennel Extracts”. Emirates Journal of Food and Agriculture, vol. 33, no. 1, Mar. 2021, pp. 73-86, doi:10.9755/ejfa.2021.v33.i1.2570.

Issue

Section

Research Article