Exogenous application of glutamic acid promotes cucumber (Cucumis sativus L.) growth under salt stress conditions

Authors

  • Pakeeza Iqbal Institute of Horticultural Sciences, University of Agriculture, Faisalabad 38040, Pakistan.
  • Muhammad Awais Ghani Institute of Horticultural Sciences, University of Agriculture, Faisalabad 38040, Pakistan.
  • Basharat Ali Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan.
  • Muhammad Shahid Department of Biochemistry, University of Agriculture, Faisalabad 38040, Pakistan
  • Qumer Iqbal Fiblast, LLC. 1602 Mizell Road, Tuskegee, AL 36083, USA
  • Khurram Ziaf Institute of Horticultural Sciences, University of Agriculture, Faisalabad 38040, Pakistan
  • Muhammad Azam Institute of Horticultural Sciences, University of Agriculture, Faisalabad 38040, Pakistan.
  • Anam Noor Department of Horticulture Sciences, Bahauddin Zakariya University, Multan, Pakistan
  • Kaiser Latif Cheema Pulses Research Institute, Ayub Agricultural Research Institute Faisalabad, Pakistan
  • Jahanzeb Ahmad Institute of Horticultural Sciences, University of Agriculture, Faisalabad 38040, Pakistan.

DOI:

https://doi.org/10.9755/ejfa.2021.v33.i5.2699

Abstract

Salinity is expected to be the major destructive abiotic stress that causes ionic and oxidative damage leading to growth reduction and ultimately plant death. Glutamic acid (GA) is an α-amino acid that is used by almost all living beings in the biosynthsis of proteins. Therefore, in the present study, we tried to investigate the effect of foliar application of glutamic acid (GA) on cucumber (Cucumis sativus L.) under altered salinity levels. Cucumber seedlings were grown in plastic pots under greenhouse conditions by applying four levels of salinity (0, 3 dS/m, 6 dS/m and 12 dS/m) and two levels of foliar applied GA (0, 10 mM). Salinity was induced by mixing the salt and soil before seed sowing; however, exogenous GA was applied when the vine length was reached up to maximum height. Morphological characters showed disruptive response under saline conditions especially in indigenous cultivar (local cucumber represented as V1). Enhanced activities of superoxide dismutase (0.29 u g-1 FW), guaiacol peroxidase (3.51 u g-1 FW) and ascorbate peroxidase (0.39 µmol AsA.mg-1 Chl min-1) were observed in salt-stressed cucumber leaves. Both varieties showed unusual behavior for malondialdehyde in decreasing manner with increasing salinity levels (2.0333 µmol g-1 FW at 12dS/m in local cultivar; while, 1.98 µmol g-1 FW at 12dS/m in hybrid cultivar SSC-228). However, exogenously applied GA played a beneficial role in promoting all morphological parameters under stress with increasing scavenging abilities against reactive oxygen species. Foliar application of GA improved plant defense mechanism with minimum destruction. Remarked calculations showed that under salt stress, GA improved plant stress tolerance against salinity by maximizing the growth rate.

Downloads

Download data is not yet available.

References

Aghaleh, M., V. Niknam, H. Ebrahimzadeh and K. Razavi. 2009. Salt stress effects on growth, pigments, proteins and lipid peroxidation in Salicornia persica and S. europaea. Biol. Plant. 53: 243-248.
Al-Harbi, A. R. 1994. Effect of manipulating nutrient solution salinity on the growth of cucumber Cucumis sativus L. grown in NFT. Acta Hortic.361: 267-273.
Ashraf, M. Y. and A. S. Bhatti. 2000. Effect of salinity on growth and chlorophyll content in rice. Pak. J. Ind. Res. 43: 130-131.
Barbosa, J. M., N. K. Singh, J. H. Cherry and R. D. Locy. 2010. Nitrate uptake and utilization is modulated by exogenous g-aminobutyric acid in Arabidopsis thaliana seedlings. Plant Physiol. Biochem. 48: 443-450.
Blumwald, E. 2000. Sodium transport and salt tolerance in plants. Curr. Opin. Cell Biol. 12: 431-434.
Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
Chartzoulakis, K. S. 1990. Effects of saline irrigation water on germination, growth and yield of greenhouse cucumber. Acta Hortic. 287: 327-334.
Chartzoulakis, K. S. 1992. Effect of NaCl salinity on germination, growth and yield of greenhouse cucumber. J. Hortic. Sci. 67: 115-119.
Chartzoulakis, K. S. 1994. Photosynthesis, water relation and leaf growth of cucumber exposed to salt stress. Sci. Hortic. 59: 27-35.
Chauhan, A., B. A. Abu-Amarah, A. Kumar, J. S. Verma, H. A. Ghramh, K. A. Khan and M. J. Ansari. 2019. Influence of gibberellic acid and different salt concentrations on germination percentage and physiological parameters of oat cultivars. Saudi J. Biol. Sci. 26: 1298-1304.
Chen, X., S. W. Chen, M. Sun and Z. N. Yu. 2005. High yield of poly-γ-glutamic acid from Bacillus subtilis by solid-state fermentation using swine manure as the basis of a solid substrate. Bioresour. Technol. 96: 1872-1879.
Elkahoui, S., J. A. Hemandez, C. Abdelly, R. Ghrir and F. Limam. 2005. Effects of salt on lipid peroxidation and antioxidant enzyme activities of Catharanthus roseus suspension cells. Plant Sci. 168: 607-613.
El-Shaieny, A. H. 2015. Seed germination percentage and early seedling establishment of five (Vigna unguiculata L. (Walp) genotypes under salt stress. Eur. J. Exp. Biol. 5: 22-32.
Fan, X. X., Z. G. Xu, X. Y. Liu, C. M. Tang, L. W. Wang and X. L. Han. 2013. Effects of light intensity on the growth and leaf development of young tomato plants grown under a combination of red and blue light. Sci. Hortic. 153: 50-55.
Fricke, W., G. Akhiyarova, D. Veselov and G. Kudoyarova. 2004. Rapid and tissue specific changes in ABA and in growth rate response to salinity in barley leaves. J. Exp. Bot. 55: 1115-1123.
Gebauer, J., E. K. Siddig, A. A. Salih and G. Ebert. 2004. Tamarindus indica L. seedlings are moderately salt tolerant when exposed to NaCl-induced salinity. Sci. Hort. 103: 1-8.
Ghani, M. A., A. Mushtaq, K. Ziaf, B. Ali, M. M. Jahangir, R. W. Khan, M. Azam and A. Noor. 2021. Exogenously applied GA3 promotes plant growth in onion by reducing oxidative stress under saline conditions. J. Agric. Sci. 27: 122-128.
Goncalves, B., C. M. Correia, A. P. Silva, E. A. Bacelar and A. Santos. 2008. Leaf structure and function of sweet cherry tree (Prunus Avium L.) cultivars with open and dense canopies. J. Sci. Hortic. 116: 381-387.
Heath, R. and L. Packer. 1968. Photo oxidation in isolated chloroplast. 1. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125: 189-198.
Hellmann, H., D. Funk, D. Rentsch and W. B. Frommer. 2000. Hypersensitivity of an Arabidopsis sugar signaling mutant toward exogenous proline application. Plant Physiol. 122: 357-68.
Jin, L., Y. Cai, C. Sun, Y. Huang and T. Yu. 2019. Exogenous l-glutamate treatment could induce resistance against Penicillium expansum in pear fruit by activating defense-related proteins and amino acids metabolism. Postharvest Biol. Tec. 150: 148-157.
Kato, M. and S. Shimizu. 1987. Chlorophyll metabolism in higherplants.7. Chlorophyll degradation in senescing tobacco-leaves phenolic-dependent per oxidative degradation. J. Bot. 65: 729-735.
Kholova, J., R. K. Sairam, R. C. Meena and G. C. Srivastava. 2009. Response of maize genotypes to salinity stress in relation to osmolytes and metal-ions contents, oxidative stress and antioxidant enzymes activity. Biol. Plant 53: 249-256.
Lee, G., R. N. Carrow and R. R. Duncan. 2005. Growth and water relation responses to salinity stress in halophytic seashore paspalum ecotypes. Sci. Hort. 104: 221-236.
Liu, T. and J. V. Staden. 2001. Growth rate, water relations and ion accumulation of soybean callus lines differing in salinity tolerance under salinity stress and its subsequent relief. Plant Growth Reg. 34: 277-285.
Luo, J., H. Li, T. Liu, A. Polle, C. Peng and Z. B. Luo. 2013. Nitrogen metabolism of two contrasting poplar species during acclimation to limiting nitrogen availability. J. Exp. Bot. 64: 4207-4224.
Lycoskoufis, I. H., D. Savvas and G. Mavrogianpoulos. 2005. Growth, gas exchange, and nutrient status in pepper (Capsicum annuum L.) grown in recirculating nutrient solution as affected by salinity imposed to half of the root system. Sci. Hort. 106: 147-161.
Mansour, M. M. F. and K. H. A. Salama. 2004. Cellular basis of salinity tolerance in plants. Environ. Exp. Bot. 52: 113-122.
Meena, S. K., N. K. Gupta, S. Khandelwal and E. V. D. Saatry. 2003. Effect of sodium chloride on the growth and gas exchange of young Ziziphus seedling rootstocks. J. Hort. Sci. Biotechnol. 78: 454-457.
Meloni, D. A., M. A. Oliva, C. A. Martinez and J. Cambraia. 2003. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ. Exp. Bot. 49: 69-76.
Miller, G., N. Suzuki, S. Ciftcyilmaz and R. Mittler. 2010. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ.33: 453-467.
Miyashita, Y. and A. G. Good. 2008: Contribution of the GABA shunt to hypoxia-induced alanine accumulation in roots of Arabidopsis thaliana. Plant Cell Physiol. 49(1): 92-102.
Nasri, N., S. Maatallah, L. Saidi and M. Lachaal. 2017. Influence of salinity on germination, seedling growth, ion content and acid phosphatase activities of Linum usitatissimum L. J. Anim. Plant Sci. 27: 517-521.
Neelambari, M. C. and S. S. Ganesh. 2018. Curative effect of ascorbic acid and gibberellic acid on wheat (Triticum astivum L.) metabolism under salinity stress. Int. J. Curr. Microbiol. Appl. Sci. 7: 522-533.
Neufeld, H., A. H. Chappelka, G. L. Somers, K. O. Burkey, A. W. Davison and P. Finkelstein. 2006. Visible foliar injury caused by ozone alters the relationship between SPAD meter readings and chlorophyll concentrations in cut leaf coneflower. Phot. Res. 87: 281-286.
Patterson, B. D., E. A. Macrae and I. B. Ferguson. 1984. Estimation of hydrogen peroxide in plants using titanium (IV). Anal. Biochem. 139: 487-492.
Ries, S. and C. Giannopolitis. 1977. Superoxide dismutases.1. occurrence in higher plants. Plant Physiol. 59: 309-314.
Rodriguez-rosales, M. P., F. J. Galves, R. Huertas, M. N. Aranda, M. Baghour, O. Cagnac and K. Venema. 2009. Plant NHX cation/proton antiporters. Plant Signal Behav. 4: 265-276.
Saqib, M., J. Akhar and R. H. Qureshi. 2005. Na+ exclusion and salt resistance of wheat (Triticum estivum) in saline water logged conditions are improved by the development of adventitious nodal roots and cortical root aerenchyma. Plant Sci. 169: 125-130.
Scebba, F., L. Sebastiani and C. Vitagliano. 2001. Activities of antioxidant enzymes during senescence of Prunus armeniaca leaves. Biol. Plant 44: 41-46.
Shih, I. L. and Y. T. Van. 2001. The production of poly- (γ-glutamic acid) from micro-organisms and its various applications. Bioresour. Technol. 79: 207-225.
Sudhakar, C., A. Lakshmi and S. Giridarakumar. 2001. Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Sci. 161: 613-619.
Sudhir, P. R., D. Pogoryelov, L. Kovacs, G. Garab and S. D. Murthy. 2005. The effects of salt stress on photosynthetic electron transport and thylakoid membrane proteins in the cyanobacterium Spirulina platensis. J. Biochem. Mol. Biol. 38: 481-485.
Tanou, G., A. Molassiotis and G. Diamantidis. 2009. Induction of reactive oxygen species and necrotic death-like destruction in strawberry leaves by salinity. Environ. Exp. Bot. 65: 270-281.
Tavakkoli, E., P. Rengasamy and G. K. Mcdonald. 2010. High concentrations of Na+ and Cl- ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. J. Exp. Bot. 61: 4449-4459.
Tester, M. and R. Davenport. 2003. Na+ tolerance and Na+ transport in higher plants. Ann. Bot. 91: 503-527.
Trajkova, F., N. Papadantonakis and D. Savvas. 2006. Comparative effects of NaCl and CaCl2 salinity on cucumber grown in a closed hydroponic system. Hort. Sci. 41: 437-441.
Tseng, M. J., C. W. Liu and J. C. Yiu. 2007. Enhanced tolerance to sulfur dioxide and salt stress of transgenic Chinese cabbage plants expressing both superoxide dismutase and catalase in chloroplasts. Plant Physiol. Biochem. 45: 822-833.
Tuna, L. A., C. Kaya, M. Dikilitas and D. Higgs. 2008. The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants. Environ. Exp. Bot. 62: 1-9.
Van-ittersuma, M. K., L. G. J. Van-bussel, J. Wolf, P. Grassini, J. Van-wart, N. Guilpart, L. Claessens, H. De-groot, K. Wiebe, D. Mason-d’croz, H. Yang, H. Boogaard, P. A. J. Van-Oort, M. P. Van-Loon, K. Saito, O. Adimo, S. Adjei-Nsiah, A. Agali, A. Bala, R. Chikowo, K. Kaizzi, M. Kouressy, J. H. J. R. Makoi, K. Ouattara, K. Tesfaye and K. G. Cassman. 2016. Can sub-Saharan Africa feed itself? PNAS. 113: 14964-14969.
Wang, Q., S. Chen, J. Zhang, M. Sun, Z. Liu and Z. Yu. 2008. Co-producing lipopeptides and poly-γ-glutamic acid by solid-state fermentation of Bacillus subtilis using soybean and sweet potato residues and its biocontrol and fertilizer synergistic effects. Bioresour. Technol. 8: 3318-3323.
Wang, W., B. Vinocur and A. Altman. 2003. Plant responses to drought, salinity and extreme temperatures towards genetic engineering for stress tolerance. Planta 218: 1-14.
Xu, Z., P. Lei, X. Feng, X. Xu, J. Liang, B. Chi and H. Xu. 2014. Calcium involved in the poly(γ-glutamic acid) mediated promotion of Chinese cabbage nitrogen metabolism. Plant Physiol. Biochem. 80: 144-152.
Xu. Z., P. Lei, X. Feng, X. Xu, H. Xu, H. Yang and W. Tang. 2013. Effect of poly (γ-glutamic acid) on microbial community and nitrogen pools of soil. Res. J. Agric. Sci. 63: 657-668.
Zhu, X. C., F. B. Song, S. Liu and F. L. Liu. 2016. Role of arbuscular mycorrhiza in alleviating salinity stress in wheat (Triticuma estivum L.) grown under ambient and elevated CO2. J. Agron. Crop Sci. 202: 486-496.
Zhu, Z., G. Q. Wei, J. Li, Q. Q. Qian, and J. Q. Yu. 2004. Silicon alleviates salt stress and increases antioxidant enzyme activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Sci. 167: 527-533.

Published

2021-07-28

How to Cite

Iqbal, P., M. A. Ghani, B. Ali, M. Shahid, Q. Iqbal, K. Ziaf, M. Azam, A. Noor, K. L. Cheema, and J. Ahmad. “Exogenous Application of Glutamic Acid Promotes Cucumber (Cucumis Sativus L.) Growth under Salt Stress Conditions”. Emirates Journal of Food and Agriculture, vol. 33, no. 5, July 2021, pp. 407-16, doi:10.9755/ejfa.2021.v33.i5.2699.

Issue

Section

Research Article

Most read articles by the same author(s)