Exogenous application of ascorbic acid and putrescine: A natural eco-friendly potential for alleviating NaCl stress in barley (Hordeum vulgare)

Authors

  • Engy Alaa Seleem Agricultural Botany Department, Faculty of Agriculture, Cairo University, 12613, Giza, Egypt
  • Hend Mohammad Saad Ibrahim Agricultural Botany Department, Faculty of Agriculture, Cairo University, 12613, Giza, Egypt
  • Zeinab Kassem Taha Agricultural Botany Department, Faculty of Agriculture, Cairo University, 12613, Giza, Egypt

DOI:

https://doi.org/10.9755/ejfa.2021.v33.i8.2742

Abstract

A pot experiment was performed in the green house of Agricultural Botany Department, Faculty of Agriculture, Cairo University, Giza, Egypt during the winter seasons of 2019 and 2020 to investigate the effect of exogenous application of ascorbic acid (AsA) and putrescine (Put) in ameliorating the growth parameters of barley (Hordeum vulgare L.) plant under saline conditions (9.3 and 14 dS m-1). Two concentrations of either AsA (100 and 300 ppm) or Put (100 and 200 ppm) were foliar-sprayed individually or in combination with both salt concentrations. Vegetative, yield, and anatomical characters, leaf photosynthetic pigments, and grain crude protein declined in response to stress, while electrolyte leakage (EL), proline, glycine betaine (GB), total carbohydrates and antioxidant enzymes increased under same conditions. The maximum increments in vegetative characters were notable at concentrations of either AsA at 300 ppm or Put at 100 ppm. Yield characters were enhanced at 300 ppm AsA and both concentrations of Put. Improvement in anatomical features of leaf and stem was achieved with the combination of either AsA at 300 ppm or Put at 100 ppm with salinity at 14 dS m-1. AsA was more effective in enhancing photosynthetic pigments and crude protein individually or in combination with salinity. Combinations of either AsA or Put with salinity induced decrements in EL, GB and antioxidant enzymes and increments in proline and total carbohydrates. In conclusion, foliar application of AsA and Put could be considered an eco-friendly approach to alleviate the adverse effects of salinity on morphological and physiological characters of barley.

Downloads

Download data is not yet available.

References

Abbasi, M. and E. Faghani. 2015. Role of salicylic acid and ascorbic acid in the alleviation of salinity stress in wheat (Triticum aestivum L.). J. Bio. Env. Sci. 6: 107-113.
Abd Elbar, O. H., R. E. Farag and S. A. Shehata. 2019. Effect of putrescine application on some growth, biochemical and anatomical characteristics of Thymus vulgaris L. under drought stress. Ann. Agric. Sci. 64(2): 129-137.
Abd Elhamid, E. M., M. S. Sadak and M. M. Tawfik. 2014. Alleviation of adverse effects of salt stress in wheat cultivars by foliar treatment with antioxidant 2- changes in some biochemical aspects, lipid peroxidation, antioxidant enzymes and amino acid contents. Agric. Sci. 5(13): 1269-1280.
Abdi, N., S. Wasti, A. Slama, M. B. Salem and M. E. Faleh. 2016. Comparative study of salinity effect on some Tunisian barley cultivars at germination and early seedling growth stages. J. Plant Physiol. Pathol. 4(3): 2.
Abou-Leila, B., S. A. Metwally, M. M. Hussen and S. Z. Leithy. 2012. The combined effect of salinity and ascorbic acid on anatomical and physiological aspects of Jatropha plants. Aust. J. Basic Appl. Sci. 6(3): 533-541.
Aebi, H. 1984. Catalase in vitro. In Methods in enzymology. Academic Press, Cambridge, Massachusetts, USA. 105:121-126
Agami, R. A. 2014. Applications of ascorbic acid or proline increase resistance to salt stress in barley seedlings. Biol. Plant. 58(2): 341-347.
Ahmad, R., C. J. Lim and S. Y. Kwon. 2013. Glycine betaine: a versatile compound with great potential for gene pyramiding to improve crop plant performance against environmental stresses. Plant Biotechnol. Rep. 7(1): 49-57.
Ahmed, A. H., E. Darwish, S. A. F. Hamoda and M. G. Alobaidy. 2013. Effect of putrescine and humic acid on growth, yield and chemical composition of cotton plants grown under saline soil conditions. Am. Eurasian J. Agric. Environ. Sci. 13(4): 479-497.
Annunziata, M. G., L. F. Ciarmiello, P. Woodrow, E. Dell’Aversana and P. Carillo. 2019. Spatial and temporal profile of glycine betaine accumulation in plants under abiotic stresses. Front. Plant Sci. 10: 230P.
Ashraf, M. P. J. C. and P. J. C. Harris. 2004. Potential biochemical indicators of salinity tolerance in plants. Plant Sci. 166(1): 3-16.
Atabayeva, S., A. Nurmahanova, S. Minocha, A. Ahmetova, S. Kenzhebayeva, S. Aidosova, A. Nurzhanova, A. Zhardamalieva, S. Asr, R. Alybayeva and T. Li. 2013. The effect of salinity on growth and anatomical attributes of barley seedling (Hordeum vulgare L.). Afr. J. Biotechnol. 12(18): 2366-2377.
Badawy, E. S. M., K. M. Mahros, H. A. Mahmoud, M. M. Hassan and E. S. I. Mohamed. 2015. Anatomical structure of Antirrhinum majus plant stem and leaf as affected by diatomite, putrescine and alpha-tocopherol treatments. Int. J. Chemtech Res. 8(12): 488-496.
Bakry, B. A., T. A. Elewa, M. F. El-Kramany and A. M. Wali. 2013. Effect of humic and ascorbic acids foliar application on yield and yield components of two wheat cultivars grown under newly reclaimed sandy soil. Intl. J. Agron. Plant Prod. 4(6): 1125-1133.
Bates, L. S., R. P. Waldren and I. D. Teare. 1973. Rapid determination of free proline for water-stress studies. Plant Soil. 39: 205-207.
Blum, A. and A. Ebercon. 1981. Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Sci. 21: 43-47.
Bybordi, A. 2010. The influence of salt stress on seed germination, growth and yield of canola cultivars. Not. Bot. Horti. Agrobot. Cluj Napoca. 38(1): 128-133.
Çavuşoğlu, K., S. Kılıç and K. Kabar. 2008. Effects of some plant growth regulators on stem anatomy of radish seedlings grown under saline (NaCl) conditions. Plant Soil Environ. 54(10): 428-433.
Darvishan, M., H. R. Tohidi-Moghadam and H. Zahedi. 2013. The effects of foliar application of ascorbic acid (vitamin C) on physiological and biochemical changes of corn (Zea mays L.) under irrigation withholding in different growth stages. Maydica 58(2): 195-200.
Degl’Innocenti, E., C. Hafsi, L. Guidi and F. Navari-Izzo. 2009. The effect of salinity on photosynthetic activity in potassium-deficient barley species. J. of Plant Physiol. 166(18): 1968-1981.
Desoky, E. S. M. and A. R. M. Merwad. 2015. Improving the salinity tolerance in wheat plants using salicylic and ascorbic acids. J. Agric. Sci. 7(10): 203-217.
Dolatabadian, A., S. A. M. M. Sanavy and K. S. Asilan. 2010. Effect of ascorbic acid foliar application on yield, yield component and several morphological traits of grain corn under water deficit stress conditions. Not. Sci. Biol. 2(3): 45-50.
Dolatabadian, A., S. A. M. M. Sanavy and F. Ghanati. 2011. Effect of salinity on growth, xylem structure and anatomical characteristics of soybean. Not. Sci. Biol. 3(1): 41-45.
Ebeed, H. T., N. M. Hassan and A. M. Aljarani. 2017. Exogenous applications of polyamines modulate drought responses in wheat through osmolytes accumulation, increasing free polyamine levels and regulation of polyamine biosynthetic genes. Plant Physiol. Biochem. 118: 438-448.
EL-Afry, M. M., S. A. EL-Okkiah, E. S. A. El-Kady and G. S. EL-Yamanee. 2018. Exogenous application of ascorbic acid for alleviation the adverse effects of salinity stress in flax (Linum usitatissimum L.). Middle East J. 7(3): 716-739.
El-Bassiouny, H. and M. S. Sadak. 2015. Impact of foliar application of ascorbic acid and α-tocopherol on antioxidant activity and some biochemical aspects of flax cultivars under salinity stress. Acta. Biolo. Colomb. 20(2): 209-222.
El-Hendawy, S. E. S. 2004. Salinity tolerance in Egyptian spring wheat genotypes. (Doctoral dissertation), Technische Universität München, Germany, 108 pp.
Ellouzi, H., K. B. Hamed, J. Cela, M. Müller, C. Abdelly and S. Munné-Bosch. 2013. Increased sensitivity to salt stress in tocopherol-deficient Arabidopsis mutants growing in a hydroponic system. Plant Signal. Behav. 8(2): e23136.
El-Rodeny, W. M. and A. F. EL-Okkiah. 2012. Physiological and anatomical changes in Glycine max L. under salinity stress. Egypt. J. Bot. 2nd International Conference (pp. 37-50). Egypt.
EL-Sharkawy, M. S., T. R. EL-Beshsbeshy, S. M. Hassan, E. K. Mahmoud, N I. Abdelkader, R. M. Al-Shal and A. M. Missaoui. 2017. Alleviating salt stress in barley by use of plant growth stimulants and potassium sulfate. J. Agric. Sci. 9(4): 136-154.
Endris, S. and M. J. Mohammed. 2007. Nutrient acquisition and yield response of barley exposed to salt stress under different levels of potassium nutrition. Intl. J. Environ. Sci. Technol. 4(3): 323-330.
Estaji, A., H. M. Kalaji, H. R. Karimi, H. R. Roosta and S. M. Moosavi-Nezhad. 2019. How glycine betaine induces tolerance of cucumber plants to salinity stress. Photosynthetica. 57(3): 753-761.
Farooq, A., S. A. Bukhari, N. A. Akram, M. Ashraf, L. Wijaya, M. N. Alyemeni and P. Ahmad. 2020. Exogenously applied ascorbic acid-mediated changes in osmoprotection and oxidative defense system enhanced water stress tolerance in different cultivars of safflower (Carthamus tinctorious L.). Plants. 9(1): 104.
Gerami, M., A. Mohammadian and V. Akbarpour. 2019. The effect of putrescine and salicylic acid on physiological characteristics and antioxidant in Stevia rebaudiana B. under salinity stress. J. Crop Breed. 11(29): 40-54.
Ghalati, R. E., M. Shamili and A. Homaei. 2020. Effect of putrescine on biochemical and physiological characteristics of guava (Psidium guajava L.) seedlings under salt stress. Sci. Hortic. 261: 108961.
Giri, J. 2011. Glycinebetaine and abiotic stress tolerance in plants. Plant signal. Behav. 6(11): 1746-1751.
Gul, H., L. Anjum, M. Arif and M. Shah. 2018. Effects of exogeneous application of putrescine on different biochemical parameters of Zea mays L. under salinity stress. FUUAST J. Biol. 8(1): 65-72.
Haddadi, B. S., H. Hassanpour and V. Niknam. 2016. Effect of salinity and waterlogging on growth, anatomical and antioxidative responses in Mentha aquatica L. Acta Physiol. Plant. 38(5): 119.
Hadia, E., A. Slama, L. Romdhane, H. C. M’hamed, A. H. Abodoma, M. A. S. Fahej and L. Radhouane. 2020. Morpho-physiological and molecular responses of two Libyan bread wheat cultivars to plant growth regulators under salt stress. Ital. J. Agron. 15(3): 246-252.
Hameed, M., M. Ashraf, N. Naz and F. Al-Qurainy. 2010. Anatomical adaptations of Cynodon dactylon (L.) Pers. from the Salt Range Pakistan to salinity stress. I. Root and stem anatomy. Pak. J. Bot. 42(1): 279-289.
Hanafy Ahmed, A. H., M. R. Nesiem, A. M. Hewedy and H. E. S. Sallam. 2010. Effect of some simulative compounds on growth, yield and chemical composition of snap bean plants grown under calcareous soil conditions. J. Am. Sci. 6(10): 552-569.
Hassan, T. U. and A. Bano. 2016. Effects of putrescine foliar spray on nutrient accumulation, physiology, and yield of wheat. Commun. Soil Sci. Plan. 47(8): 931-940.
Hassanein, R. A., S. A. El-Khawas, S. K. Ibrahim, H. M. El-Bassiouny, H. A. Mostafa and A. A. Abdel-Monem. 2013. Improving the thermo tolerance of wheat plant by foliar application of arginine or putrescine. Pak. J. Bot. 45(1): 111-118.
Herbert, D., P. J. Philipps and R. E. Strange. 1971. Carbohydrate analysis. Methods Enzymol. B 5(680): 265-277.
Hussein, M. M. and A. K. Alva. 2014. Effects of zinc and ascorbic acid application on the growth and photosynthetic pigments of millet plants grown under different salinity. Agric. Sci. 5(13):1253-1260.
Komatsu, S., H. Konishi and M. Hashimoto. 2007. The proteomics of plant cell membranes. J. Exp. Bot. 58(1): 103-112.
Magda, A. F., A. El-azeem and K. Salem. 2014. Growth and productivity of barley cv Giza-129 cultivar as affected by putrescine and spermidine under water stress conditions. Life Sci. J. 11(9s): 666-671.
Mahlooji, M., R. S. Sharifi, J. Razmjoo, M. R. Sabzalian and M. Sedghi. 2018. Effect of salt stress on photosynthesis and physiological parameters of three contrasting barley genotypes. Photosynthetica 56(2): 549-556.
Mittal, N., S. Thakur, H. Verma and A. Kaur. 2018. Interactive effect of salinity and ascorbic acid on Brassica rapa L. plants. J. BioSci. Biotechnol. 7(1): 27-29.
Mogazy, A. M., E. A. Seleem and G. F. Mohamed. 2020. Mitigating the harmful effects of water deficiency stress on white lupine (Lupinus albus L.) plants by using algae extract and hydrogen peroxide. J. Plant Prod. 11(10): 921-931.
Mohamed, A. A., B. Eichler-Lobermann and E. Schnug. 2007. Response of crops to salinity under Egyptian conditions: a review. Landbauforschung Volkenrode 57(2): 119-125.
Mohamed, H. I., S. A. Akladious and H. S. El-Beltagi. 2018. Mitigation the harmful effect of salt stress on physiological, biochemical and anatomical traits by foliar spray with trehalose on wheat cultivars. Fresenius Environ. Bull. 27: 7054-7065.
Moharramnejad, S., O. Sofalian, M. Valizadeh, A. Asgari and M. Shiri. 2015. Proline, glycine betaine, total phenolics and pigment contents in response to osmotic stress in maize seedlings. J. Biosci. Biotechnol. 4(3): 313-319.
Mohsen, A. A., M. K. H. Ebrahim and W. F. S. Ghoraba. 2013. Effect of salinity stress on Vicia faba productivity with respect to ascorbic acid treatment. Iran. J. Plant Physiol. 3(3): 725-736.
Moori, S. and H. R. Eisvand. 2017. Plant growth regulators and ascorbic acid effects on physiological quality of wheat seedlings obtained from deteriorated seeds. Pak. J. Bot. 49(5):1811-1819.
Mornai, R. 1982. Formula for determination of chlorophyllous pigments extracted with N.N. Dimethyl Formamide. Plant Phyisol. 69:1371-1381.
MSTAT-C. 1991. Software Program for the Design, Management and Analysis of Agronomic Research Experiments. Michigan State University, East Lansing, Michigan, USA.
Munns, R., R. A. James and A. Läuchli. 2006. Approaches to increasing the salt tolerance of wheat and other cereals. J. Exp. Bot. 57(5): 1025-1043.
Naidu, B. P. 1998. Separation of sugars, polyols, proline analogues, and betaines in stressed plant extracts by high performance liquid chromatography and quantification by ultra violet detection. Funct. Plant Biol. 25(7): 793-800.
Nassar, M. A. and K F. El-Sahhar. 1998. Botanical Preparations and Microscopy (Microtechnique). Academic Bookshop, Dokki, Giza, Egypt, 219 pp.
Ola, A. E., E. F. Reham, S. S. Eisa and S. A. Habib. 2012. Morpho-anatomical changes in salt stressed kallar grass (Leptochloa fusca L. Kunth). Res. J. Agric. Biol. Sci. 8(2):158-166.
Pakar, N., H. Pirasteh-Anosheh, Y. Emam and M. Pessarakli. 2016. Barley growth, yield, antioxidant enzymes, and ion accumulation affected by PGRs under salinity stress conditions. J. Plant Nutr. 39(10): 1372-1379.
Parida, A. K., S. K. Veerabathini, A. Kumari and P. K. Agarwal. 2016. Physiological, anatomical and metabolic implications of salt tolerance in the halophyte Salvadora persica under hydroponic culture condition. Front. Plant Sci. 7: 351.
Peach, K. and M. B. Tracey. 1956. Modern method of plant analysis Vol 1, Narosa Publishing House, New Delhi, India.
Pomeranz, Y. and M. E. Clifton. 1987. Food analysis: Theory and practice. Van Nostrand Reinold, New York, USA.
Quessada, M. P. and J. J. Macheix. 1984. Characterization of a peroxidase specifically involved in lignification processes, in relation with graft incompatibility of apricot tree. Physiol. Veg. 22(5): 533-540.
Rademacher, W. 2015. Plant growth regulators: backgrounds and uses in plant production. J. Plant Growth Regul. 34(4): 845-872.
Rahdari, P. and S. M. Hoseini. 2013. Role of poly amines (Spermidine and Putrescine) on protein, chlorophyll and phenolic compounds in wheat (Triticum aestivum L.) under salinity stress. J. Nov. Appl. Sci. 2(12): 746-751.
Sadak, M. S., E. M. A. Elhamid and H. M. Mostafa 2013. Alleviation of adverse effects of salt stress in wheat cultivars by foliar treatment with antioxidants I. changes in growth, some biochemical aspects and yield quantity and quality. Am. Eurasian J. Agric. Environ. Sci. 13(11): 1476-1487.
Sairam, R. K. and A. Tyagi. 2004. Physiology and molecular biology of salinity stress tolerance in plants. Curr. Sci. 86(3): 407-421.
Shalata, A. and P. M. Neumann. 2001. Exogenous ascorbic acid (vitamin C) increases resistance to salt stress and reduces lipid peroxidation. J. Exp. Bot. 52(364): 2207-2211.
Shapiro, S. S. and M. B. Wilk. 1965. Analysis of variance test for normality (complete samples). Biometrika 52(3/4): 591-611.
Shu, S., Y. Yuan, J. Chen, J. Sun, W. Zhang, Y. Tang, M. Zhong and S. Guo. 2015. The role of putrescine in the regulation of proteins and fatty acids of thylakoid membranes under salt stress. Sci. Rep. 5: 14390.
Shummu, S., S. Anil and C. Sikander Pal. 2012. Influence of exogenously applied epibrassinolide and putrescine on protein content, antioxidant enzymes and lipid peroxidation in Lycopersicon esculentum under salinity stress. Am. J. Plant Sci. 3: 714-720.
Snedecor, G. W. and W. G. Cochran. 1994. Statistical Methods. 9th Ed., Iowa State Univ. Press, Ames, Iowa, USA.
SPSS Statistics 17.0. 2008. SPSS for Windows. SPSS Inc. 2008.
Waller, R. A. and D. B. Duncan. 1969. A Bayes rule for the symmetric multiple comparisons problem. J. Am. Stat. Assoc. 64(328): 1484-1503.
Wu, X., S. Shu, Y. Wang, R. Yuan and S. Guo. 2019. Exogenous putrescine alleviates photoinhibition caused by salt stress through cooperation with cyclic electron flow in cucumber. Photosynth. Res. 141(3): 303-314.
Younis, A., A. Riaz, I. Ahmed, M. I. Siddique, U. Tari, M. Hameed and M. Nadeem. 2014. Anatomical changes induced by NaCl stress in root and stem of Gazania harlequin L. Agric. Commun. 2(3): 8-14.
Yuan, R. N., S. Shu, S. R. Guo, J. Sun and J. Q. Wu. 2018. The positive roles of exogenous putrescine on chlorophyll metabolism and xanthophyll cycle in salt-stressed cucumber seedlings. Photosynthetica 56(2): 557-566.
Yuan, Y., M. Zhong, S. Shu, N. Du, L. He, L. Yuan, J. Sun and S. Guo. 2015. Effects of exogenous putrescine on leaf anatomy and carbohydrate metabolism in cucumber (Cucumis sativus L.) under salt stress. J. Plant Growth Regul. 34(3): 451-464.
Zhong, M., Y. Yuan, S. Shu, J. Sun, S. Guo, R. Yuan and Y. Tang. 2016. Effects of exogenous putrescine on glycolysis and Krebs cycle metabolism in cucumber leaves subjected to salt stress. J. Plant Growth Regul. 79(3): 319-330.

Published

2021-09-10

How to Cite

Seleem, E. A., H. M. S. Ibrahim, and Z. K. Taha. “Exogenous Application of Ascorbic Acid and Putrescine: A Natural Eco-Friendly Potential for Alleviating NaCl Stress in Barley (Hordeum Vulgare)”. Emirates Journal of Food and Agriculture, vol. 33, no. 8, Sept. 2021, pp. 657-70, doi:10.9755/ejfa.2021.v33.i8.2742.

Issue

Section

Research Article